scholarly journals Performance Analysis of Wireless Sensor Nodes over Indoor and Outdoor Environments

Author(s):  
Xuechao Di ◽  
Byung-Hyun Moon
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Uthman Baroudi ◽  
Amin-ud-din Qureshi ◽  
Samir Mekid

Wireless sensor networks can provide effective means for monitoring and controlling a wide range of applications. Recently, tremendous effort was directed towards devising sensors powered from ambient sources such as heat, wind, and vibration. Wireless energy transfer is another source that has attractive features that make it a promising candidate for supplying power to wireless sensor nodes. This paper is concerned with characterizing and modeling the charging time and received signal strength indicator for wireless energy transfer system. These parameters play a vital role in deciding the geometry of sensor network and the routing protocols to be deployed. The development of communication protocols for wireless-powered wireless sensor networks is also improved with the knowledge of such models. These two quantities were computed from data acquired at various coordinates of the harvester relative to a fixed position of RF energy source. Data was acquired for indoor and outdoor scenarios using the commercially available PowerCast energy harvester and evaluation board. Mathematical models for both indoor and outdoor environments were developed and analyzed. A few guidelines on how to use these models were suggested. Finally, the possibility of harvesting the energy from the ambient RF power to energize wireless sensor nodes was also investigated.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
Mohammed A. Alanezi ◽  
Houssem R.E.H. Bouchekara ◽  
Mohammed. S. Javaid

The localization of the nodes in wireless sensor networks is essential in establishing effective communication among different devices connected, within the Internet of Things. This paper proposes a novel method to accurately determine the position and distance of the wireless sensors linked in a local network. The method utilizes the signal strength received at the target node to identify its location in the localized grid system. The Most Valuable Player Algorithm is used to solve the localization problem. Initially, the algorithm is implemented on four test cases with a varying number of sensor nodes to display its robustness under different network occupancies. Afterward, the study is extended to incorporate actual readings from both indoor and outdoor environments. The results display higher accuracy in the localization of unknown sensor nodes than previously reported.


Sign in / Sign up

Export Citation Format

Share Document