Mechanical Properties of V Scarf Joint Repair Surface of FRP Vessels through Hybrid Fiber Lamination

2021 ◽  
Vol 25 (4) ◽  
pp. 23-31
Author(s):  
Dae-Kon Kang ◽  
Jai-Hak Park
2019 ◽  
Vol 69 (336) ◽  
pp. 200 ◽  
Author(s):  
M. Cao ◽  
C. Xie ◽  
L. Li ◽  
M. Khan

In this paper, calcium carbonate (CaCO3) whisker as a fiber reinforcement is mixed with steel and PVA fiber to form a multiscale hybrid fiber reinforced cementitious composites (MHFRCC). ASTM standard and post-crack strength techniques are performed to evaluate the mechanical properties of MHFRCC. The 1.25 % long steel fiber, 0.55 % short PVA fiber and 2.0 % CaCO3 whisker specimens showed the best flexural behavior before L/600 deflection. However, 1.5 % long steel fiber, 0.4 % long PVA fiber and 1.0 % CaCO3 whisker specimens presented better crack resistance after L/600 deflection. It is revealed that flexural parameters increase as comprehensive reinforcing index increase. The result showed that the CaCO3 whisker and short PVA fiber provided crack resistance effect at micro-scale and mainly play a dominate role in inhibiting micro-cracking. However, long steel fiber and long PVA fiber showed a better bridging effect of macro cracks at a large deflection.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5055
Author(s):  
S.M. Iqbal S. Zainal ◽  
Farzad Hejazi ◽  
Farah N. A. Abd. Aziz ◽  
Mohd Saleh Jaafar

The use of fibers in cementitious composites yields numerous benefits due to their fiber-bridging capabilities in resisting cracks. Therefore, this study aimed to improve the shear-resisting capabilities of conventional concrete through the hybridization of multiple synthetic fibers, specifically on reinforced concrete structures in seismic-prone regions. For this study, 16 hybrid fiber-reinforced concretes (HyFRC) were developed from the different combinations of Ferro macro-synthetic fibers with the Ultra-Net, Super-Net, Econo-Net, and Nylo-Mono microfibers. These hybrids were tested under direct shear, resulting in improved shear strength of controlled specimens by Ferro-Ultra (32%), Ferro-Super (24%), Ferro-Econo (44%), and Ferro-Nylo (24%). Shear energy was further assessed to comprehend the effectiveness of the fiber interactions according to the mechanical properties, dosage, bonding power, manufactured material, and form of fibers. Conclusively, all fiber combinations used in this study produced positive synergistic effects under direct shear at large crack deformations.


Sign in / Sign up

Export Citation Format

Share Document