Optimizing Energy Consumption Prediction Models using Genetic Algorithms

2021 ◽  
Vol 3 (1) ◽  
pp. 307-316
Author(s):  
Seungmin Oh ◽  
Yeonggwang Kim ◽  
Muhammad Firoz Mridha
2021 ◽  
Author(s):  
Sedef Akinli Koçak

In recent years, a significant amount of energy consumption of ICT products has resulted in environmental concerns. Growing demand for mobile devices, personal computers, and the widespread adaptation of cloud computing and data centers are the main drivers for the energy consumption of the ICT systems. Finding solutions for improving the energy efficiency of the systems has become an important objective for both industry and academia. In order to address the increase in ICT energy consumption, hardware technology, such as production of energy efficient processors, has been substantially improved. However, demand for energy is growing faster than improvements are being made on these energy-aware technologies. Therefore, in addition to hardware, software technologies must also be a focus of research attention. Although software does not consume energy by itself, its characteristics determine which hardware resources are made available and how much electrical energy is used. Current literature on the energy efficiency of software, highlights, in particular, a lack of measurements and models. In this dissertation, first, the relationship between software code properties and energy consumption is explored. Second, using static code metrics regression based energy consumption prediction models are investigated. Finally, the models performance are assessed using within product and cross-product energy consumption prediction approaches. For this purpose, a quantitative based retrospective cohort study was employed. As research methods, observational data collection, mining software repositories, and regression analysis were utilized. This research results show inconsistent relationships between energy consumption and code size and complexity attributes considering different types of software products. Such results provide a foundation of knowledge that static code attributes may give some insights but would not be the sole predictors of energy consumption of software products.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Dong Xiao ◽  
Jichun Wang

Piercing manufacture of seamless tubes is the process that pierces solid blank into tube hollow. Piercing efficiency and energy consumption are the important indexes in the production of seamless tubes. Piercing process has the multivariate, nonlinear, cross-coupling characteristics. The complex factors that affect efficiency and consumption make it difficult to establish the mechanism models for optimization. Based on the production process, this paper divides the piercing process into three parts and proposes the piercing efficiency and energy consumption prediction models based on mean value staged KELM-PLS method. On the basis of mean value staged KELM-PLS prediction model, the minimum piercing energy consumption and maximum piercing efficiency are calculated by genetic optimization algorithm. Simulation and experiment prove that the optimization method based on the piercing efficiency and energy consumption prediction model can obtain the optimal process parameters effectively and also provide reliable evidences for practical production.


Author(s):  
Amir Mosavi ◽  
Abdullah Bahmani

Machine learning (ML) methods has recently contributed very well in the advancement of the prediction models used for energy consumption. Such models highly improve the accuracy, robustness, and precision and the generalization ability of the conventional time series forecasting tools. This article reviews the state of the art of machine learning models used in the general application of energy consumption. Through a novel search and taxonomy the most relevant literature in the field are classified according to the ML modeling technique, energy type, perdition type, and the application area. A comprehensive review of the literature identifies the major ML methods, their application and a discussion on the evaluation of their effectiveness in energy consumption prediction. This paper further makes a conclusion on the trend and the effectiveness of the ML models. As the result, this research reports an outstanding rise in the accuracy and an ever increasing performance of the prediction technologies using the novel hybrid and ensemble prediction models.


Energies ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Hamid Khosravani ◽  
María Castilla ◽  
Manuel Berenguel ◽  
Antonio Ruano ◽  
Pedro Ferreira

2019 ◽  
Vol 12 (1) ◽  
pp. 109 ◽  
Author(s):  
Mansu Kim ◽  
Sungwon Jung ◽  
Joo-won Kang

When researching the energy consumption of residential buildings, it is becoming increasingly important to consider how residents use energy. With the advancement of computing power and data analysis techniques, it is now possible to analyze user information using big data techniques. Here, we endeavored to integrate user information with the physical characteristics of residential buildings to analyze how these elements impact energy consumption. Regression analysis was conducted to accurately identify the impact of each element on energy consumption. It was found that six elements were influential in all seasons: the number of exterior walls, housing direction, housing area, number of years occupied, number of household members, and the occupation of the household head. The elements that had an impact in each period were then derived. Based on the results of the regression analysis, input variables for the training of an artificial neural network (ANN) model were selected for each period, and residential energy consumption prediction models were implemented based on actual consumption. The elements identified as those affecting energy consumption, through regression analysis, can be used for implementing prediction models with advanced forms. This study is significant in that we derived influential elements from an integrative perspective.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Tiago Yukio Fujii ◽  
Victor Takashi Hayashi ◽  
Reginaldo Arakaki ◽  
Wilson Vicente Ruggiero ◽  
Romeo Bulla ◽  
...  

Using extensive databases and known algorithms to predict short-term energy consumption comprises most computational solutions based on artificial intelligence today. State-of-the-art approaches validate their prediction models in offline environments that disregard automation, quality monitoring, and retraining challenges present in online scenarios. The existing demand response initiatives lack personalization, thus not engaging consumers. Obtaining specific and valuable recommendations is difficult for most digital platforms due to their solution pattern: extensive database, specialized algorithms, and using profiles with similar aspects. The challenges and present personalization tactics have been researched by adopting a digital twin model. This study creates a different approach by adding structural topology to build a new category of recommendation platform using the digital twin model with real-time data collected by IoT sensors to improve machine learning methods. A residential study case with 31 IoT smart meter and smart plug devices with 19-month data (measurements performed each second) validated Digital Twin MLOps architecture for personalized demand response suggestions based on online short-term energy consumption prediction.


Sign in / Sign up

Export Citation Format

Share Document