scholarly journals Quality Characteristics of Biscuits Produced from Composite Flour of Sweet Potato and Cashew Nut Flour Blends

2020 ◽  
pp. 11-22
Author(s):  
O. O. Tanko ◽  
T. O. Hussaina ◽  
N. S. Donaldben

The research is aimed at adding value to sweet potato based biscuits using underutilized crops such as cashew nuts. The objective of the study was to add value to sweet potato based biscuits, the sweet potato was processed into flour; while the cashew nuts was unroasted cashew nuts were sorted to remove the stones, dirt’s and unwholesome cashew nuts, roasted, shelled, dried, peeled and processed into flour and sieved. The cashew nuts flour was substituted at 20, 30, 40 and 50% into sweet potato flour to produce sweet potato and cashew nuts composite flour were  used for the production of biscuits. Functional, proximate composition of the biscuits, physical and sensory properties of composite biscuits were determined. Significance difference (P<0.05) was observed Bulk density, water absorption capacity, oil absorption capacity, swelling capacity, emulsion activity, foaming stability and gelatinization temperature increased from 0.62 to 0.73 g/cm3, 1.31 to 1.81 g/g, 2.10 to 2.22 g/g, 6.42 to 7.18 ml, 59.71 to 60.51%, 6.19 to 6.43% and 68.20 to 72.10ºC, respectively with an increase in the addition of cashew nuts flour. The crude protein, crude fat, crude fibre and ash increase from 14.65 to 18.31%, 7.88 to 10.21%, 3.21 to 3.51% and 4.10 to 4.76% respectively; while the moisture and carbohydrate content of the biscuits decreased from 13.77 to 13.31% and 56.39 to 49.89%, respectively with increase in the addition of the cashew nuts flour. The physical properties of the composite biscuits such as the weight, thickness, diameter and spread ratio ranged from 16.09 to 17.45 g, 10.87 to 10.96 mm, 38.94 to 40.02 mm and 3.56 to 3.60 respectively. The average means scores for the appearance, crispness, taste, aroma and overall acceptability increase were observed. There was a significant difference (p<0.05) in the appearance, taste and aroma while there was no significant difference (p>0.05) in the crispness and overall acceptability.

2019 ◽  
pp. 1-12
Author(s):  
M. O. Eke ◽  
D. Ahure ◽  
N. S. Donaldben

Cookies was produced from wheat (Triticum, spp), acha (Digitaria exilis), and sprouted soybeans (Glycine max) flour blends. The acha and soybeans were processed into flour and used to substitute wheat flour at different proportions with 100:0:0 wheat, acha and sprouted soybeans flour (WAS) as the control, 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS). The functional properties of the wheat, acha and sprouted soybeans flour blends, physical properties and proximate compositions of the cookies were determined. The functional properties of the flour samples shows that the bulk density, wettability, water absorption capacity, oil absorption capacity and gelatinization temperature ranged from 0.63 g/ml-0.99 g/ml, 10.21-12.98 g/sec, 6.53-12.52 g/g, 0.52-0.66 g/g and 63.7-65.1ºC respectively. There were significant differences (p<0.05) in all the values. The proximate composition of cookies sample showed that crude protein, crude fat, crude fibre, ash, moisture and carbohydrate content ranged from 12.14-16.48 %, 2.10-3.74 %, 1.76-2.55 %, 2.75-8.55 %, 9.18-9.50 % and 59.37-72.06 % respectively. The physical properties of cookies showed that the weight, diameter, thickness and spread ratio ranged from 15.61-17.11g; 61.59-63.20mm; 9.88-11.99mm and 5.28-6.24 respectively. The control sample cookies from 100:0:0 (WAS), wheat, acha and sprouted soybeans flour blends sample had the highest sensory scores in terms of the taste, appearance, texture, aroma and overall acceptability. There was significant difference (p<0.05) in the colour, texture and aroma but there was no significant difference (p>0.05) in the taste and overall acceptability in 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS) samples.


2021 ◽  
pp. 65-73
Author(s):  
Owuno Friday ◽  
Achinewu Simeon Chituru

Chin-Chin, a traditional Nigerian snack was prepared utilizing wheat-fermented maize residue composite flour at 0 – 30% replacement levels. Effects of this addition on the functional and pasting properties of the flour composite was evaluated. The snack produced was also evaluated for its sensory attributes, proximate composition and invitro-protein digestibility (IVPD). Functional properties results showed an increase in water absorption capacity (WAC), a decrease in oil absorption capacity (OAC), decrease in Bulk Density (BD), swelling power and solubility index with residue addition. Pasting property results showed a drop in the value of peak, trough, breakdown and final viscosity with substitution while set back viscosity increased.Peak temperature decreased, but values for pasting temperature showed no significant difference between the control and the blends. Results for sensory evaluation showed equal preference for overall acceptability. Proximate composition results showed residue addition led to an increase in crude fibre and protein content with a drop in the carbohydrate value. Residue addition did not increase protein digestibility. Addition of fermented maize residue in chin-chin production can be another way of utilizing the fibre rich by-product of the production of fermented maize starch.


Author(s):  
Florence A. Bello ◽  
Etoro-Obong E. Akpan ◽  
Victor E. Ntukidem

The present study was undertaken to produce cookies from readily available but underutilized Nigerian crops such as sorghum, pigeon pea and orange fleshed sweet potato. Different blends of sprouted sorghum, pigeon pea and orange fleshed potato flour were mixed and coded in the ratios (w/w) 100:0:0 (A), 95:5:0 (B), 85:10:5(C), 75:15:10(D), 65:20:15(E) while 100% wheat flour (F) was produced as control. The functional properties of the flour samples were determined while produced cookies were evaluated for their physical, proximate, selected vitamins, anti-nutrients and sensory properties using standard methods. Significant (p < 0.05) increases in water absorption capacity, bulk density and swelling index of flour blends were observed as the level of substitutions increased. Control sample had the highest weight (13.89 g) and spread ratio (1.22) while sample E had the least weight (7.31 g) and least spread ratio (0.92). Moisture, crude protein, crude lipid, ash, crude fibre contents as well as energy value of flour blends cookies were significantly (p < 0.05) higher with increased level of pigeon pea and potato flours addition. Significant (p < 0.05) reduction in the carbohydrate content of the cookies was observed. Vitamin A and C contents of sample E were significantly (p < 0.05) higher than the value obtained for sample F. Anti-nutritional factors in the cookies samples were within permissible levels. Sensory ratings showed that sample B compared favourably with sample F based on overall acceptability.


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


2019 ◽  
pp. 1-13
Author(s):  
M. T. Ukeyima ◽  
T. A. Dendegh ◽  
P. C. Okeke

Aim: To evaluate effect of carrot powder addition on the quality attributes of cookies produced from wheat and soy flour blends. Study Design: Cookies were produced from wheat flour, soy flour and carrot powder composite blends. Functional (bulk density, foam capacity, oil absorption capacity, water absorption capacity and swelling index) properties, Proximate (crude protein, ash, moisture, crude fibre, crude fat, carbohydrate and energy value) composition, Physical (weight, diameter, thickness and spread ratio) and sensory (appearance, flavour, taste, texture and overall acceptability) attributes were determined. Results: The functional properties showed that Bulk Density ranged from 0.82 – 0.92, Foam capacity ranged 3.92 – 5.00, Oil Absorption Capacity ranged from 0.60 – 0.97%, Water Absorption Capacity ranged from 1.05 – 1.45% and Swelling Index ranged from 2.37 – 2.75. Results of percentage proximate composition showed that moisture content ranged from 4.70 – 7.57, protein content ranged from 10.61 – 21.60, fat content ranged from 8.89 – 15.85, fibre content ranged from 1.39 – 4.30, ash content ranged from 0.70 – 1.23 and carbohydrate content ranged from 52.34 – 70.84. The physical properties showed that weight of the cookies ranged from 17.85 – 21.60, diameter ranged from 57.50 – 60.50, thickness ranged from 20.50 – 24.00 and spread ratio ranged from 2.40 – 2.91. The sensory attribute showed that cookies produced from wheat flour, soy flour and carrot powder compared well with cookies produced with wheat flour. The wheat flour cookie sample (A) was most preferred by the panellist. Conclusion: The functional properties of the composite flour produced from wheat, soybean and carrot powder show potential quality that when properly harnessed could be used for the production of baked product like biscuits, pastry etc. The proximate composition shows that the composite flour cookies were the most preferred sample to the 100% wheat flour cookies. This is due to its high protein, fat, ash and fibre content to that of thee 100% wheat cookies. However, in terms of proximate composition, the composite cookies were most acceptable. The physical property of the cookies indicates that the composite flour cookies were most preferred to the 100% wheat cookie. This could be seen from the high values it’s had in weight, diameter and spread ratio. However, the sensory score of the overall acceptability shows that the 100% wheat cookies were most acceptable. Though, the composite flour cookies compete very closely with 100% wheat cookies.


2018 ◽  
Vol 6 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Sanju Bala Dhull ◽  
Kawaljit Singh Sandhu

Composite flour noodles were prepared by blending fenugreek flour (FF) with wheat flour (WF) at a replacement level of 2%, 5%, 7% and 10%, respectively. The chemical, functional, and pasting properties of different flour blends were assessed to check its suitability for noodle making. FF exhibited significantly (p 0.05) high protein (28.5%), crude fibre (7.2%), fat (4.9%) and ash content (3.6%) as compared with WF. Water absorption capacity, water solubility index, oil absorption capacity, foaming capacity and emulsion capacity showed an increase in values while the peak viscosity of flour blends decreased with increase in the level of FF. The noodles prepared with wheat-fenugreek flour blends showed higher cooking time, water uptake and cooked weight but less gruel solid loss as compared with control (100% WF) noodles. Noodles prepared with 93% WF+7% FF scored a satisfactory overall acceptability score for their sensory characteristics. Therefore, noodles with satisfactory eating, cooking, texture attributes can be prepared incorporating fenugreek flour up to a level of 7%, helps in exploring the health benefits of fenugreek.


2021 ◽  
Vol 25 (5) ◽  
pp. 741-749
Author(s):  
K.K. Salome ◽  
O.F.J. Awofadeju ◽  
A.A. Olapade

Research efforts in developing countries have focused on the improvement of protein quality of food products due to mass malnutrition. The inclusion of unripe plantain into African yam bean flours for the preparation of stiff dough (Amala) was studied. The ratios of unripe plantain into African yam bean are 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. Chemical and functional properties of composite flour as well as overall acceptability of the product were evaluated. The result of moisture content is within safe limit to ensure shelf stability. Crude protein (6.87-12.98) and ash (2.43-6.57%) increases with increasing proportion of African yam bean into unripe plantain flours, while carbohydrate (66.27-56.77) and crude fibre (1.46-1.11%) decreases. The bulk density ranged from (0.92-3.34 g/ mL), water absorption capacity (1.07-1.60%), least gelation capacity (4.10-14.23%), and swelling power 1.49-1.77 g/g at 50 oC, 1.54-1.88 at 60 oC, 2.63-2.89 at 70 oC and 4.42-6.60 g/g at 80 oC, respectively. The solubility index ranged from 1.49-1.77 at 50 oC, 1.54-1.88 at 60 oC, 2.63-2.89 at 70oC and 4.42-6.60 g/g at 80 oC. The sensory evaluation showed no significant difference in taste, colour, texture/mouth feel and aroma while sample with 30% African yam bean flour has the highest value in overall acceptability. Enrichment of unripe plantain with African yam bean flours significantly increases its nutritional value which has the potential to combat protein-energy malnutrition and micronutrient deficiencies in Nigeria and Africa as a whole.


Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 371-379
Author(s):  
J.A. Adeyanju ◽  
G.O. Babarinde ◽  
B.F. Olanipekun ◽  
I.F. Bolarinwa ◽  
S.O. Oladokun

In this study, the suitability of wheat, acha and African yam bean composite flour in the development of cookies was investigated. Wheat, acha and African yam bean were blended into various proportions of flour mixes and used to produce cookies. The flour mixes were analyzed for the proximate, minerals composition, functional properties and anti-nutrients, while the cookies were evaluated for its sensory and physical properties. The proximate composition of the flours varied from 7.85-9.71%, 12.34-14.01%, 1.15- 1.86%, 1.21-1.49%, 1.65-1.92% and 70.01-76.11% for moisture, protein, fat, crude fiber, ash and carbohydrate content of the flour, respectively. The mineral content ranged from 10.11-13.12 mg/100 g, 52.65-61.76 mg/100 g, 130.71-211.76 mg/100 g, 111.97-130.84 mg/100 g and 14.81-20.43 mg/100 g for calcium, magnesium, potassium, phosphorus and sodium, respectively. The functional properties ranged from 0.76-0.80 g/cm3 ; 86.65- 188.11 g/g; 94.30-197.23 g/g; 569.23-699.54%; 5.68-6.44%; 61.50-125.50 sec, 73.75- 75.25% for bulk density, water absorption capacity, oil absorption capacity, swelling capacity, solubility, wettability and dispersiblity respectively. The anti-nutritional properties ranged from 37.67 to 46.73 mg/100 g, 5.27 to 5.57 mg/100 g and 32.91 to 35.10 mg/100 g for oxalate, phytate and tannin, respectively. The physical properties values ranged from 6.11-8.20 mm, 38.46-39.30 mm, 37.83-38.23 mm, 4.79-5.85, 5.35-7.49 g and 1.72-1.90 kg for thickness, diameter, height, spread ratio, weight and break strength respectively. Cookies from composite flours were not significantly (p>0.05) different from the control in overall acceptability. This shows the possibility of producing nutritious cookies with desirable organoleptic qualities from wheat, acha and African yam bean flour.


2019 ◽  
Vol 11 (1) ◽  
pp. 30-36
Author(s):  
Idowu Michael Ayodele ◽  
Adeola Abiodun Aderpju ◽  
Oke Emmanuel Kehinde ◽  
Amusa Ayodeji Joseph ◽  
Omoniyi Saheed Adewale

This study investigated the functional and pasting properties of wheat and tigernut pomace flour blends, as well as the sensory attributes of the meat pie obtained from the composite flour. Tigernut pomace flour was substituted for wheat flour in the amount of 2 –10%. Unsubstituted wheat flour served as the control. The composite blends were analysed for functional and pasting properties. The sensory attributes of the meat pie obtained from the composite flour were also determined. Bulk density, water absorption capacity, swelling power, and the solubility index of the blends ranged from 0.70 -0.75 g/mL, 0.62 -0.96%, 4.06 -4.47 g/g, and 2.45 -13.7% respectively. Peak, trough, breakdown, final, and setback viscosities, peak time, and pasting temperature ranged from 113.6 -135.9 RVU, 76.7 -90.2 RVU, 36.0 -45.8 RVU, 170 -183.7 RVU, 91.0 -93.6 RVU, 5.07 -6.03 min, and 88.4 -90.0 RVU respectively. In terms of appearance, the meat pie samples prepared from tigernut-substituted flour blends did not show significant difference (p &lt; 0.05) from the control sample. The control sample had the highest overall acceptability, although samples from the composite blends were also found to be acceptable. Hence, tigernut pomace flour could be substituted for wheat at the amount of 10% to produce an acceptable meat pie.


2018 ◽  
Vol 6 (3) ◽  
pp. 798-806
Author(s):  
NIDHI CHOPRA ◽  
BHAVNITA DHILLON ◽  
RUPA RANI ◽  
ARASHDEEP SINGH

The study was conducted to formulate cookies with and without partial replacement of wheat flour (W) with sweet potato (SP) and quinoa flour (Q) blends. Sweet potato flour and quinoa flour were blended in equal proportion and then incorporated at the levels of 20, 40 and 60% by replacing wheat flour to prepare cookies. The cookies formulations were: CI(Control, 100W), CII (80W+10Q+10SP), CIII (60W+20Q+20SP) and CIV (40W+30Q+30SP).The three flour types and the prepared cookies were accessed for their nutritional properties. The prepared cookies were also evaluated for their physical parameters and sensory characteristics. The nutritional profile of cookies increased with increased level of addition of sweet potato and quinoa flour. The protein, fat, fibre and ash content of cookies prepared with 60% replacement of wheat flour with sweet potato and quinoa flour blend were found to be29.3, 71.6, 51.8 and 108.3% respectively, higher than those of control cookies. The spread ratio and the thickness of cookies decreased with the addition of blended flour of sweet potato and quinoa. All the cookies were found acceptable on the hedonic scale in terms of appearance, colour, texture, flavour, taste and overall acceptability. The CII cookies were most preferred by the sensory panel with overall acceptability score of 7.8, only next to control cookies (CI) with a score of 8.


Sign in / Sign up

Export Citation Format

Share Document