scholarly journals Effect of Acha and Sprouted Soybeans Flour on the Quality of Wheat Based Cookies

2019 ◽  
pp. 1-12
Author(s):  
M. O. Eke ◽  
D. Ahure ◽  
N. S. Donaldben

Cookies was produced from wheat (Triticum, spp), acha (Digitaria exilis), and sprouted soybeans (Glycine max) flour blends. The acha and soybeans were processed into flour and used to substitute wheat flour at different proportions with 100:0:0 wheat, acha and sprouted soybeans flour (WAS) as the control, 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS). The functional properties of the wheat, acha and sprouted soybeans flour blends, physical properties and proximate compositions of the cookies were determined. The functional properties of the flour samples shows that the bulk density, wettability, water absorption capacity, oil absorption capacity and gelatinization temperature ranged from 0.63 g/ml-0.99 g/ml, 10.21-12.98 g/sec, 6.53-12.52 g/g, 0.52-0.66 g/g and 63.7-65.1ºC respectively. There were significant differences (p<0.05) in all the values. The proximate composition of cookies sample showed that crude protein, crude fat, crude fibre, ash, moisture and carbohydrate content ranged from 12.14-16.48 %, 2.10-3.74 %, 1.76-2.55 %, 2.75-8.55 %, 9.18-9.50 % and 59.37-72.06 % respectively. The physical properties of cookies showed that the weight, diameter, thickness and spread ratio ranged from 15.61-17.11g; 61.59-63.20mm; 9.88-11.99mm and 5.28-6.24 respectively. The control sample cookies from 100:0:0 (WAS), wheat, acha and sprouted soybeans flour blends sample had the highest sensory scores in terms of the taste, appearance, texture, aroma and overall acceptability. There was significant difference (p<0.05) in the colour, texture and aroma but there was no significant difference (p>0.05) in the taste and overall acceptability in 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS) samples.

2020 ◽  
pp. 11-22
Author(s):  
O. O. Tanko ◽  
T. O. Hussaina ◽  
N. S. Donaldben

The research is aimed at adding value to sweet potato based biscuits using underutilized crops such as cashew nuts. The objective of the study was to add value to sweet potato based biscuits, the sweet potato was processed into flour; while the cashew nuts was unroasted cashew nuts were sorted to remove the stones, dirt’s and unwholesome cashew nuts, roasted, shelled, dried, peeled and processed into flour and sieved. The cashew nuts flour was substituted at 20, 30, 40 and 50% into sweet potato flour to produce sweet potato and cashew nuts composite flour were  used for the production of biscuits. Functional, proximate composition of the biscuits, physical and sensory properties of composite biscuits were determined. Significance difference (P<0.05) was observed Bulk density, water absorption capacity, oil absorption capacity, swelling capacity, emulsion activity, foaming stability and gelatinization temperature increased from 0.62 to 0.73 g/cm3, 1.31 to 1.81 g/g, 2.10 to 2.22 g/g, 6.42 to 7.18 ml, 59.71 to 60.51%, 6.19 to 6.43% and 68.20 to 72.10ºC, respectively with an increase in the addition of cashew nuts flour. The crude protein, crude fat, crude fibre and ash increase from 14.65 to 18.31%, 7.88 to 10.21%, 3.21 to 3.51% and 4.10 to 4.76% respectively; while the moisture and carbohydrate content of the biscuits decreased from 13.77 to 13.31% and 56.39 to 49.89%, respectively with increase in the addition of the cashew nuts flour. The physical properties of the composite biscuits such as the weight, thickness, diameter and spread ratio ranged from 16.09 to 17.45 g, 10.87 to 10.96 mm, 38.94 to 40.02 mm and 3.56 to 3.60 respectively. The average means scores for the appearance, crispness, taste, aroma and overall acceptability increase were observed. There was a significant difference (p<0.05) in the appearance, taste and aroma while there was no significant difference (p>0.05) in the crispness and overall acceptability.


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


Author(s):  
Florence A. Bello ◽  
Etoro-Obong E. Akpan ◽  
Victor E. Ntukidem

The present study was undertaken to produce cookies from readily available but underutilized Nigerian crops such as sorghum, pigeon pea and orange fleshed sweet potato. Different blends of sprouted sorghum, pigeon pea and orange fleshed potato flour were mixed and coded in the ratios (w/w) 100:0:0 (A), 95:5:0 (B), 85:10:5(C), 75:15:10(D), 65:20:15(E) while 100% wheat flour (F) was produced as control. The functional properties of the flour samples were determined while produced cookies were evaluated for their physical, proximate, selected vitamins, anti-nutrients and sensory properties using standard methods. Significant (p < 0.05) increases in water absorption capacity, bulk density and swelling index of flour blends were observed as the level of substitutions increased. Control sample had the highest weight (13.89 g) and spread ratio (1.22) while sample E had the least weight (7.31 g) and least spread ratio (0.92). Moisture, crude protein, crude lipid, ash, crude fibre contents as well as energy value of flour blends cookies were significantly (p < 0.05) higher with increased level of pigeon pea and potato flours addition. Significant (p < 0.05) reduction in the carbohydrate content of the cookies was observed. Vitamin A and C contents of sample E were significantly (p < 0.05) higher than the value obtained for sample F. Anti-nutritional factors in the cookies samples were within permissible levels. Sensory ratings showed that sample B compared favourably with sample F based on overall acceptability.


2021 ◽  
Vol 25 (5) ◽  
pp. 741-749
Author(s):  
K.K. Salome ◽  
O.F.J. Awofadeju ◽  
A.A. Olapade

Research efforts in developing countries have focused on the improvement of protein quality of food products due to mass malnutrition. The inclusion of unripe plantain into African yam bean flours for the preparation of stiff dough (Amala) was studied. The ratios of unripe plantain into African yam bean are 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. Chemical and functional properties of composite flour as well as overall acceptability of the product were evaluated. The result of moisture content is within safe limit to ensure shelf stability. Crude protein (6.87-12.98) and ash (2.43-6.57%) increases with increasing proportion of African yam bean into unripe plantain flours, while carbohydrate (66.27-56.77) and crude fibre (1.46-1.11%) decreases. The bulk density ranged from (0.92-3.34 g/ mL), water absorption capacity (1.07-1.60%), least gelation capacity (4.10-14.23%), and swelling power 1.49-1.77 g/g at 50 oC, 1.54-1.88 at 60 oC, 2.63-2.89 at 70 oC and 4.42-6.60 g/g at 80 oC, respectively. The solubility index ranged from 1.49-1.77 at 50 oC, 1.54-1.88 at 60 oC, 2.63-2.89 at 70oC and 4.42-6.60 g/g at 80 oC. The sensory evaluation showed no significant difference in taste, colour, texture/mouth feel and aroma while sample with 30% African yam bean flour has the highest value in overall acceptability. Enrichment of unripe plantain with African yam bean flours significantly increases its nutritional value which has the potential to combat protein-energy malnutrition and micronutrient deficiencies in Nigeria and Africa as a whole.


Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 371-379
Author(s):  
J.A. Adeyanju ◽  
G.O. Babarinde ◽  
B.F. Olanipekun ◽  
I.F. Bolarinwa ◽  
S.O. Oladokun

In this study, the suitability of wheat, acha and African yam bean composite flour in the development of cookies was investigated. Wheat, acha and African yam bean were blended into various proportions of flour mixes and used to produce cookies. The flour mixes were analyzed for the proximate, minerals composition, functional properties and anti-nutrients, while the cookies were evaluated for its sensory and physical properties. The proximate composition of the flours varied from 7.85-9.71%, 12.34-14.01%, 1.15- 1.86%, 1.21-1.49%, 1.65-1.92% and 70.01-76.11% for moisture, protein, fat, crude fiber, ash and carbohydrate content of the flour, respectively. The mineral content ranged from 10.11-13.12 mg/100 g, 52.65-61.76 mg/100 g, 130.71-211.76 mg/100 g, 111.97-130.84 mg/100 g and 14.81-20.43 mg/100 g for calcium, magnesium, potassium, phosphorus and sodium, respectively. The functional properties ranged from 0.76-0.80 g/cm3 ; 86.65- 188.11 g/g; 94.30-197.23 g/g; 569.23-699.54%; 5.68-6.44%; 61.50-125.50 sec, 73.75- 75.25% for bulk density, water absorption capacity, oil absorption capacity, swelling capacity, solubility, wettability and dispersiblity respectively. The anti-nutritional properties ranged from 37.67 to 46.73 mg/100 g, 5.27 to 5.57 mg/100 g and 32.91 to 35.10 mg/100 g for oxalate, phytate and tannin, respectively. The physical properties values ranged from 6.11-8.20 mm, 38.46-39.30 mm, 37.83-38.23 mm, 4.79-5.85, 5.35-7.49 g and 1.72-1.90 kg for thickness, diameter, height, spread ratio, weight and break strength respectively. Cookies from composite flours were not significantly (p>0.05) different from the control in overall acceptability. This shows the possibility of producing nutritious cookies with desirable organoleptic qualities from wheat, acha and African yam bean flour.


2019 ◽  
Vol 11 (1) ◽  
pp. 30-36
Author(s):  
Idowu Michael Ayodele ◽  
Adeola Abiodun Aderpju ◽  
Oke Emmanuel Kehinde ◽  
Amusa Ayodeji Joseph ◽  
Omoniyi Saheed Adewale

This study investigated the functional and pasting properties of wheat and tigernut pomace flour blends, as well as the sensory attributes of the meat pie obtained from the composite flour. Tigernut pomace flour was substituted for wheat flour in the amount of 2 –10%. Unsubstituted wheat flour served as the control. The composite blends were analysed for functional and pasting properties. The sensory attributes of the meat pie obtained from the composite flour were also determined. Bulk density, water absorption capacity, swelling power, and the solubility index of the blends ranged from 0.70 -0.75 g/mL, 0.62 -0.96%, 4.06 -4.47 g/g, and 2.45 -13.7% respectively. Peak, trough, breakdown, final, and setback viscosities, peak time, and pasting temperature ranged from 113.6 -135.9 RVU, 76.7 -90.2 RVU, 36.0 -45.8 RVU, 170 -183.7 RVU, 91.0 -93.6 RVU, 5.07 -6.03 min, and 88.4 -90.0 RVU respectively. In terms of appearance, the meat pie samples prepared from tigernut-substituted flour blends did not show significant difference (p &lt; 0.05) from the control sample. The control sample had the highest overall acceptability, although samples from the composite blends were also found to be acceptable. Hence, tigernut pomace flour could be substituted for wheat at the amount of 10% to produce an acceptable meat pie.


Author(s):  
Moses Terkula Ukeyima ◽  
Israel Okpunyi Acham ◽  
Comfort Temitope Awojide

Ogi was produced from composite flour of fermented Acha, roasted Soybean and Carrot.  The raw materials were blended in varying proportions. Proximate composition, functional properties and sensory characteristics of the formulated Ogi samples were evaluated. The results of the proximate composition showed a significant increase in moisture (5.36% to 9.94%), protein (3.94% to 16.98%), fat (1.89% to 10.23%), crude fiber (1.80% to 3.12%) and ash (0.35% to 0.99%); while a decrease was observed in carbohydrate (86.66% to 58.74%) with increase in supplementation with roasted Soybean flour and constant addition of carrot flour along with the milk flavor. The functional properties showed significant increase in foam capacity (5.99% to 7.97%), Swelling index (2.46 v/v to 3.08 v/v) and Least gelation capacity (8.10% to 14.0%); while a decrease was observed in bulk density (0.84 g/mL to 0.72 g/mL), water absorption capacity (1.40% to 1.10%) and foaming stability (3.39% to 2.79%). Sensory characteristics result revealed that there was no significant difference (p<0.05) in aroma and overall acceptability with increasing incorporation of roasted Soybean flour and constant addition of Carrot flour with milk flavor. Aside the control sample (containing 100% fermented Acha flour) there was preference for Sample C (70% fermented Acha flour: 15% roasted Soybean flour: 10% Carrot flour: 5% Milk flavor) and Sample D (60% fermented Acha flour: 25% roasted Soybean flour: 10% `Carrot flour: 5% Milk flavor) in terms of color (6.65 and 6.25), taste (6.95 and 6.35), aroma (6.45 and 6.30), mouth feel (6.10 and 6.35) and overall acceptability (6.50 and 6.50) respectively, among the blend formulations. Supplementation of fermented Acha with roasted Soybean and Carrot flour considerably increased the protein and fat contents of the blend; hence Soybean should be used for supplementation of cereal based product in order to improve their nutritional composition.


Author(s):  
U. E. Inyang ◽  
V. P. Elijah

The demand for food products with functional attributes is on the increase worldwide. The present study was aimed at evaluating the effect of supplementing whole wheat flour with 0, 10, 20, 30, 40 and 50% whole green plantain flour on pasting properties of the flour blends, proximate composition, minerals and sensory characteristics of crackers made from the blends. The 100% whole wheat flour served as the control sample. The result showed that the peak viscosity (PV), trough viscosity (TV), breakdown viscosity (BDV), final viscosity (FV) and setback viscosity (SBV) were significantly affected by the level of plantain flour substitution. The 20% plantain flour substitution level recorded the minimum PV (264.00RVU), TV (248.00RVU), FV (531.00RVU) and SBV (263.00RVU) while the 50% plantain flour substituted blend recorded the highest PV (362.00RVU), TV (328.00RVU) and FV (603.00RVU). The control sample recorded the highest SBV (312.00RVU) and least BDV (3.00RVU). The peak times for all the blended samples were the same (7 min) while the time for the control sample was 5 min. There was insignificant difference (P>0.05) in the pasting temperature which ranged from 91.30 – 92.80oC. The crude protein, fat and calcium contents progressively decreased while the ash, crude fibre, carbohydrate, K, Mg, Fe and Zn contents in the prepared crackers progressively increased with increase in the proportion of plantain flour substitution. Cracker prepared from the blend of 80% whole wheat and 20% whole green plantain flours was the most preferred by the sensory evaluation panellists in terms of taste, texture and overall acceptability. It is evident from the study that acceptable crackers of enhanced nutritive value could be produced from blend of 80% whole wheat and 20% whole green plantain flours. The use of flour from unpeeled plantain as ingredient in cracker production would eliminate waste generation and its associated environmental problems.


2021 ◽  
pp. 65-73
Author(s):  
Owuno Friday ◽  
Achinewu Simeon Chituru

Chin-Chin, a traditional Nigerian snack was prepared utilizing wheat-fermented maize residue composite flour at 0 – 30% replacement levels. Effects of this addition on the functional and pasting properties of the flour composite was evaluated. The snack produced was also evaluated for its sensory attributes, proximate composition and invitro-protein digestibility (IVPD). Functional properties results showed an increase in water absorption capacity (WAC), a decrease in oil absorption capacity (OAC), decrease in Bulk Density (BD), swelling power and solubility index with residue addition. Pasting property results showed a drop in the value of peak, trough, breakdown and final viscosity with substitution while set back viscosity increased.Peak temperature decreased, but values for pasting temperature showed no significant difference between the control and the blends. Results for sensory evaluation showed equal preference for overall acceptability. Proximate composition results showed residue addition led to an increase in crude fibre and protein content with a drop in the carbohydrate value. Residue addition did not increase protein digestibility. Addition of fermented maize residue in chin-chin production can be another way of utilizing the fibre rich by-product of the production of fermented maize starch.


2020 ◽  
pp. 53-62
Author(s):  
J. A. Ayo ◽  
E. Okoye

This study investigated the nutrient composition and functional properties of flour blend of acha and amaranth grains. The amaranth flour was substituted into acha flour at 5, 10, 15, and 20% and to produce acha-amaranth flour blend. The chemical composition and functional properties of the flour blend were determined. The protein, crude fibre, fat and ash content ranged from 7.66 - 12.93, 0.44 - 0.59, 0.15 - 1.01, and 0.11 - 0.96% with increase in added amaranth grain flour (0-20%). The moisture content and carbohydrate ranged from 12.46 – 11.7, 77.41 - 4.33% and decreased with increasing added amaranth flour.   The potassium, magnesium, phosphorus, vitamin B3, vitamin E and vitamin B6 content ranged from 0.09 - 0.14, 0.06 - 0.12, 0.19 - 0.34.14 - 0.24,  0.39 - 0.75 and 0.54- 0.69 mg/100 g increase with increasing in amaranth flour. The bulk density, swelling capacity ranged from 0.79 - 0.76 g/cm3 and 295.00 -275.00 ml/g, respectively with increases in added amaranth flour. The water absorption capacity, oil absorption capacity and foaming capacity ranged from  120.00  – 145.00, 110.00  – 135.00,  0.06  - 0.09, ml/g, respectively, with increasing acha substitution using amaranth flour. the 20% amaranth flour addition had the highest values of protein, fat, ash and crude fiber at 7.66 - 12.93, 0.44 - 0.59, 0.15 - 1.01, and 0.11 - 0.96% respectively. Amaranth incorporation had significant effects and contributed to the improvement of the flour blend. 


Sign in / Sign up

Export Citation Format

Share Document