scholarly journals A Study on Generalized Balancing Numbers

Author(s):  
Y¨uksel Soykan

In this paper, we investigate properties of the generalized balancing sequence and we deal with, in detail, namely, balancing, modified Lucas-balancing and Lucas-balancing sequences. We present Binet’s formulas, generating functions and Simson formulas for these sequences. We also present sum formulas of these sequences. We provide the proofs to indicate how the sum formulas, in general, were discovered. Of course, all the listed sum formulas may be proved by induction, but that method of proof gives no clue about their discovery. Moreover, we consider generalized balancing sequence at negative indices and construct the relationship between the sequence and itself at positive indices. This illustrates the recurrence property of the sequence at the negative index. Meanwhile, this connection holds for all integers. Furthermore, we give some identities and matrices related with these sequences.

2021 ◽  
Vol 2 (2) ◽  
pp. 30-37
Author(s):  
Alaa A. Abdallah ◽  
A. A. Navlekar ◽  
Kirtiwant P. Ghadle

In this paper, we study the relationship between Cartan's second curvature tensor $P_{jkh}^{i}$ and $(h) hv-$torsion tensor $C_{jk}^{i}$ in sense of Berwald. Moreover, we discuss the necessary and sufficient condition for some tensors which satisfy a recurrence property in $BC$-$RF_{n}$, $P2$-Like-$BC$-$RF_{n}$, $P^{\ast }$-$BC$-$RF_{n}$ and $P$-reducible-$BC-RF_{n}$.


1976 ◽  
Vol 79 (3) ◽  
pp. 433-441
Author(s):  
A. G. Williams

The ‘characteristics’ of the wreath product GWrSn, where G is a finite group, are certain polynomials (to be defined in section 2) which are generating functions for the simple characters of GWrSn. Schur (8) first used characteristics of the symmetric group. Specht (9) defined characteristics for GWrSn and found a relation between the characteristics of GWrSn and those of Sn which determined the simple characters of GWrSn. The object of this paper is to describe the p-block structure of GWrSn in the case where p is not a factor of the order of G. We use the relationship between the characteristics of GWrSn and those of Sn, which we deduce from a knowledge of the simple characters of GWrSn (these can be determined, independently of Specht's work, by using Clifford theory).


2020 ◽  
Vol 12 (1) ◽  
pp. 34-45
Author(s):  
R. Frontczak ◽  
T. Goy

The main object of the present paper is to reveal connections between Mersenne numbers $M_n=2^n-1$ and generalized Fibonacci (i.e., Horadam) numbers $w_n$ defined by a second order linear recurrence $w_n=pw_{n-1}+qw_{n-2}$, $n\geq 2$, with $w_0=a$ and $w_1=b$, where $a$, $b$, $p>0$ and $q\ne0$ are integers. This is achieved by relating the respective (ordinary and exponential) generating functions to each other. Several explicit examples involving Fibonacci, Lucas, Pell, Jacobsthal and balancing numbers are stated to highlight the results.


10.37236/1383 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mike Zabrocki

The two parameter family of coefficients $K_{\lambda \mu}(q,t)$ introduced by Macdonald are conjectured to $(q,t)$ count the standard tableaux of shape $\lambda $. If this conjecture is correct, then there exist statistics $a_\mu(T)$ and $b_\mu(T)$ such that the family of symmetric functions $H_\mu[X;q,t] = \sum_\lambda K_{\lambda \mu}(q,t) s_\lambda [X]$ are generating functions for the standard tableaux of size $|\mu|$ in the sense that $H_\mu[X;q,t] = \sum_{T} q^{a_\mu(T)} t^{b_\mu(T)} s_{\lambda (T)}[X]$ where the sum is over standard tableau of of size $|\mu|$. We give a formula for a symmetric function operator $H_2^{qt}$ with the property that $H_2^{qt} H_{(2^a1^b)}[X;q,t]= H_{(2^{a+1}1^b)}[X;q,t]$. This operator has a combinatorial action on the Schur function basis. We use this Schur function action to show by induction that $H_{(2^a1^b)}[X;q,t]$ is the generating function for standard tableaux of size $2a+b$ (and hence that $K_{\lambda (2^a1^b)}(q,t)$ is a polynomial with non-negative integer coefficients). The inductive proof gives an algorithm for 'building' the standard tableaux of size $n+2$ from the standard tableaux of size $n$ and divides the standard tableaux into classes that are generalizations of the catabolism type. We show that reversing this construction gives the statistics $a_\mu(T)$ and $b_\mu(T)$ when $\mu$ is of the form $(2^a1^b)$ and that these statistics prove conjectures about the relationship between adjacent rows of the $(q,t)$-Kostka matrix that were suggested by Lynne Butler.


2020 ◽  
Vol 20 (3) ◽  
pp. 627-648
Author(s):  
NABIHA SABA ◽  
ALI BOUSSAYOUD

In this paper, we introduce a operator in order to derive some new symmetric properties of (p,q)-modified Pell numbers and we give some new generating functions of the products of (p,q)-modified Pell numbers with k-Fibonacci and k-Lucas numbers, k-Pell and k-Pell Lucas numbers, k-Jacobsthal and k-Jacobsthal Lucas numbers at positive and negative indices. By making use of the operator defined in this paper, we give some new generating functions of the products of (p,q)-modified Pell numbers with k-balancing and k-Lucas-balancing numbers.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 455
Author(s):  
Dug Hong

Hong investigated the relationship between the minimax disparity minimum variance regular increasing monotone (RIM) quantifier problems. He also proved the equivalence of their solutions to minimum variance and minimax disparity RIM quantifier problems. Hong investigated the relationship between the minimax ratio and maximum entropy RIM quantifier problems and proved the equivalence of their solutions to the maximum entropy and minimax ratio RIM quantifier problems. Liu proposed a general RIM quantifier determination model and proved it analytically by using the optimal control technique. He also gave the equivalence of solutions to the minimax problem for the RIM quantifier. Recently, Hong proposed a modified model for the general minimax RIM quantifier problem and provided correct formulation of the result of Liu. Thus, we examine the general minimum model for the RIM quantifier problem when the generating functions are Lebesgue integrable under the more general assumption of the RIM quantifier operator. We also provide a solution equivalent relationship between the general maximum model and the general minimax model for RIM quantifier problems, which is the corrected and generalized version of the equivalence of solutions to the general maximum model and the general minimax model for RIM quantifier problems of Liu’s result.


2018 ◽  
Vol 4 ◽  
pp. 137-143
Author(s):  
Ramesh Gautam

 In this paper, we present about origin of Balancing numbers; It!s connection with Triangular, Pells numbers, and Fibonacci numbers; beginning with connections of balancing numbers with other numbers system, It elaborate the different generating functions of balancing numbers. It also include some amazing recurrence relations; and the application of balancing numbers in solving Diophantine equation.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Heekyung Youn ◽  
Yongzhi Yang

We derive a differential equation and recursive formulas of Sheffer polynomial sequences utilizing matrix algebra. These formulas provide the defining characteristics of, and the means to compute, the Sheffer polynomial sequences. The tools we use are well-known Pascal functional and Wronskian matrices. The properties and the relationship between the two matrices simplify the complexity of the generating functions of Sheffer polynomial sequences. This work extends He and Ricci's work (2002) to a broader class of polynomial sequences, from Appell to Sheffer, using a different method. The work is self-contained.


2010 ◽  
Vol 149 (3) ◽  
pp. 445-453 ◽  
Author(s):  
LING LONG ◽  
JONATHAN D. H. SMITH

AbstractMotivated by a problem from number theory about the relationship between Fermat curves and modular curves, a new class of loops is introduced, the Catalan loops. In the number-theoretic context, these loops turn out to be abelian precisely when the Fermat curves and modular curves coincide. General Catalan loops arise on certain transversals to diagonal subgroups in special linear groups over rings with a topologically nilpotent element. The transversals consist of products of certain affine shears. In a Catalan loop, the multiplication and right division are given by rational functions. The left division is algebraic, corresponding to a quadratic irrationality. The left division embodies generating functions for the Catalan numbers. Structurally, Catalan loops are shown to be residually nilpotent.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


Sign in / Sign up

Export Citation Format

Share Document