scholarly journals Identifying Climatic Variables with Rice Yield Relationship and Land Cover Change Detection at Sylhet Region

Author(s):  
Gazi Tamiz Uddin ◽  
Md. Altaf Hossain ◽  
Fahmida Ishaque

The study is conducted to determine the correlation between climatic parameters and rice yield. The present study is also undertaken to analyze the land cover change in Sylhet district between 2013 and 2018 using LANDSAT-8 images. Local climate and rice yield data are collected from BMD (Bangladesh Meteorological Department) and BRRI (Bangladesh Rice Research Institute) and BBS (Bangladesh Bureau of Statistics). ArcGIS 10.5 and SPSS software are used to show the vegetation condition and correlation coefficient between rice yield and climatic variables respectively. It is revealed from the result that rainfall is negatively correlated with Aman and Boro (local and HYV) rice whereas temperature and relative humidity showed a positive correlation with local Aman and Boro rice. On the other hand, relative humidity showed a strong linear relationship with HYV Boro rice. Finally, both temperature and relative humidity have substantial effects on yields in the Boro rice. Furthermore, vegetation condition is observed through NDVI and found the moderate-high vegetation in 2013. After that NDVI value is fluctuating which evidently signifies the rapid vegetation cover change due to a flash flood, flood and other climate changing aspects. Additionally, Forested and high land vegetation’s are endangered rapidly. Some adaptation strategies should be followed to minimize the effects of natural calamities for improving better vegetation condition.

2018 ◽  
Vol 11 (1-2) ◽  
pp. 45-51 ◽  
Author(s):  
Muhannad Hammad ◽  
László Mucsi ◽  
Boudewijn van Leeuwen

Abstract Land cover change and deforestation are important global ecosystem hazards. As for Syria, the current conflict and the subsequent absence of the forest preservation are main reasons for land cover change. This study aims to investigate the temporal and spatial aspects and trends of the land cover alterations in the southern Syrian coastal basins. In this study, land cover maps were made from surface reflectance images of Landsat-5(TM), Landsat-7(ETM+) and Landsat-8(OLI) during May (period of maximum vegetation cover) in 1987, 2002 and 2017. The images were classified into four different thematic classes using the maximum likelihood supervised classification method. The classification results were validated using 160 validation points in 2017, where overall accuracy was 83.75%. Spatial analysis was applied to investigate the land cover change during the period of 30 years for each basin and the whole study area. The results show 262.40 km2 reduction of forest and natural vegetation area during (1987-2017) period, and 72.5% of this reduction occurred during (2002-2017) period due to over-cutting of forest trees as a source of heating by local people, especially during the conflict period. This reduction was particularly high in the Alabrash and Hseen basins with 76.13 and 79.49 km2 respectively, and was accompanied by major increase of agriculture lands area which is attributed to dam construction in these basins which allowed people to cultivate rural lands for subsistence or to enhance their economic situation. The results of this study must draw the relevant authorities’ attention to preserve the remaining forest area.


Author(s):  
H. Bilyaminu ◽  
P. Radhakrishnan ◽  
K. Vidyasagaran ◽  
K. Srinivasan

Understanding forest degradation due to human and natural phenomena is crucial to conserving and managing remnant forest resources. However, forest ecosystem assessment over a large and remote area is usually complex and arduous. The present study on land use and land cover change detection of the Shendurney Wildlife Sanctuary forest ecosystems was carried out to utilize the potential application of remote sensing (RS) and geographic information system (GIS). Moreover, to understand the trend in the forest ecosystem changes. The supervised classification with Maximum Likelihood Algorithm and change detection comparison approach was employed to study the land use and land cover changes, using the Landsat Enhanced Thematic Mapper (ETM±) and Landsat 8 OLI-TIRS using data captured on July 01, 2001, and January 14, 2018. The study indicated the rigorous land cover changes. It showed a significant increase in the proportion of degraded forest with negligible gain in the proportion of evergreen forest from 21.31% in 2001 to 22.97% in 2018.  A substantial loss was also observed in moist deciduous from 27.11 % in 2001 to 17.23 % in 2018. The result of the current study indicated the degree of impacts on forests from the various activities of their surroundings. This study provides baseline information for planning and sustainable management decisions.


Author(s):  
Andro M. Enovejas ◽  
◽  
Sharmaine Maldia ◽  
Nurul Amri Komarudin ◽  
Dante Gideon K. Vergara ◽  
...  

Climate variability is one of the factors that directly and greatly affect cropping system and plant yield. It is therefore very important to obtain a good understanding about climate variability or changes in the climate and the effect of these changes to clearly understand the vulnerability of food crops as well as its agronomic impacts for us to create and implement adaptive strategies to mitigate its negative effects. This study assessed the effect of climate in rice crop yield in both irrigated and rainfed ecotype farming system in Nueva Ecija Province in the Philippines using semi-annual yield data and the different climate variables such as seasonal rainfall, mean temperature, minimum temperature, and relative humidity by using empirical/statistical method through time series analysis, and correlation analysis. Results indicated that rice yield for irrigated and rainfed ecosystem type of farming in Nueva Ecija show an overall increasing trend from year 1991-2018, although there are observed decline and fluctuations in some years. The different climate variables (i.e., rainfall, temperature, and humidity) show fluctuating trends and irregularities spanning from the year 1991-2018. But it showed overall decreasing trends for relative humidity and increasing trends for rainfall, minimum temperature, and mean temperature. There are significant correlations between rice yield the all the climate variables in both irrigated and rainfed farming ecosystem types.


2021 ◽  
Vol 227 ◽  
pp. 01002
Author(s):  
Sherzod Rakhmonov ◽  
Uktam Umurzakov ◽  
Kosimdjon Rakhmonov ◽  
Iqbol Bozarov ◽  
Ozodbek Karamatov

This article depicts on discussions about land use and land cover change distribution in Khorezm province, Uzbekistan between 1987 and 2019. For the study Landsat 5 TM and Landsat 8 OLI respectively used to detect land use changes in the study area. Khorezm region affected by Aral Sea shrinkage having received salt wind from northeast of the region. Moreover, population increased within study period, making population density intense. Research is carried out to detect reflection of ecology and density in land use. RS techniques maximum likelihood employed to classify land use to generate land cover distribution map. In total seven class selected such as agricultural land, built up, bare land, lowland, saline land, sand and waterbody. The research of Khorezm region for 32 years has been thoroughly studied and found out that agricultural land, built up and saline land increased tremendously while lowland and bare soil are decreased accordingly. The result map can be used for decision makers and government bodies for future long term urban and regional planning.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Getahun Hassen ◽  
Amare Bantider ◽  
Abiyot Legesse ◽  
Malesu Maimbo ◽  
Dereje Likissa

Abstract Land use and land cover change (LULCC) are the result of different interacting socio-economic and environmental causes and consequences that have been known since the beginning of agriculture. The study intended to explore the implications and drivers of LULCC in the Ethiopian rift valley region of Gidabo river sub basin from 1986 to 2019. The researchers have triangulated the data from Landsat 5 (™), and Landsat 8 (OLI) with data obtained from key informants, focus groups and field observation, which is helpful to determine the interaction between the environment and the community. It is also important to mitigate environmental disaster (erosion, landslides, and climate change) and sustainable utilization of natural resources. The LULCC of the past 33 years implied that about 58.4 % of the area was changed to other Land use land cover (LULC) classes. This refers to the fact that about 14% of agroforestry, 2% of the settlement, 1.1% of the forest, and 1% of bare land were expanded at the expense of 10.3% of shrub/woodland, 6.3 % of grassland, and 1% of cropland classes. Therefore, as a result, the highest land cover (46.7%) was observed on the agroforestry system. Participants in group discussion and informant interviews attributed the expansion of agroforestry to the drivers, such as population density, cultural values (Songo, Babbo), traditional beliefs, land policy, and the insecurity resulting from climate change. Whereas, the drivers related to unproductive land, resettlement, urbanisation, and lack of agricultural inputs were considered as threats that will adversely affect the agroforestry system of the area. The study concluded that the high expansion of the agroforestry system has significant contribution to achieve a resilient environment and sustainable development, which integrates the socio-economic and environmental needs of the community. But greater attention should be given to the changes observed in shrub/woodland, grassland, and bare land to enhance environmental protection.


2021 ◽  
Author(s):  
Sribas Patra ◽  
Kapil Kumar Gavsker

Abstract This article examines the factors and process of change in the land use and land cover change-induced landscape dynamics in the Durgapur Sub-Division region of West Bengal in 1989, 2003, and 2018 by employing the satellite imageries of Landsat 5 (1989 and 2003) and Landsat 8 (2018). The images of the study area were categorized into seven specific land use classes with the help of Google Earth Pro. Based on the supervised classification methodology, the change detection analysis identified a significant increase in built-up land from 11% to 23% between 1989 and 2003 and from 23% to 29% in 2003 and 2018. The areas under fallow land and vegetation cover have mainly decreased, while the areas of industrial activities and urbanization expanded during the study period.


2021 ◽  
Author(s):  
Fitsum Temesgen ◽  
Bikila Warkineh ◽  
Alemayehu Hailemicael

AbstractKafta-sheraro national park (KSNP) is one of the homes of the African elephant has experienced extensive destruction of woodland following regular land use & land cover change in the past three decades, however, up to date, data and documentation detailing for these changes are not addressed. This study aims to evaluate the land use land cover change and drivers of change that occurred between 1988 and 2018. Landsat 5(TM), Landsat7 (ETM+), and Landsat 8 (OLI/TIRs) imagery sensors, field observation, and socio-economic survey data were used. The temporal and spatial Normalized difference vegetation index (NDVI) was calculated and tested the correlation between NDVI and precipitation/temperature. The study computed a kappa coefficient of the dry season (0.90) and wet season (0.845). Continuous decline of woodland (29.38%) and riparian vegetation (47.11%) whereas an increasing trend of shrub-bushland (35.28%), grassland (43.47%), bareland (27.52%), and cultivated land (118.36 km2) were showed over thirty years. More results showed bare land was expanded from wet to drier months, while, cultivated land and grazing land increased from dry to wet months. Based on the NDVI result high-moderate vegetation was decreased by 21.47% while sparse & non-vegetation was expanded by 19.8% & 1.7% (36.5 km2) respectively. Settlement & agricultural expansion, human-induced fire, firewood collection, gold mining, and charcoal production were the major proximate drivers that negatively affected the park resources. Around KSNP, the local community livelihood depends on farming, expansion of agricultural land is the main driver for woodland dynamics/depletion and this leads to increase resources competition and challenges for the survival of wildlife. Therefore, urgent sustainable conservation of park biodiversity via encouraging community participation in conservation practices and preparing awareness creation programs should be mandatory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Fiusa de Morais ◽  
Ana Clara Rodrigues Cavalcante ◽  
Deodato do Nascimento Aquino ◽  
Felipe Hermínio Meireles Nogueira ◽  
Magno José Duarte Cândido

AbstractThis study aimed to analyze fragments of rangelands through spectral responses and land cover change by livestock in regions of the Caatinga biome through remote sensing. For spectral behavior, the surface reflectance bidirectional (SRB) and spectral indexes of vegetation were used to verify the ragelands seasonality. Land cover change detection of Ouricuri and Tauá through Landsat-8 images with a 16-day revisit interval, were processed in the Google Earth Engine platform (GEE) and software Quantum GIS version 2.18 (QGIS). In the GEE platform, annual mosaics and stacking of the spectral bands were generated for the classification of images, and in sequence the production of thematic maps in QGIS. The analysis of land cover change considered the classes: thinned Caatinga, conserved Caatinga, herbaceous vegetation, bare soil, water and others. The analysis of the spectral responses showed that the vegetation monitored in Ouricuri presented higher SRB in the infrared band and lower SRB in the red and blue bands, and that caused the pasture to produce higher vegetation indexes than the other locations. Through validation, it was observed that in Tauá, there was an overall accuracy of 91% and Kappa index of 89%, and in Ouricuri there was an overall accuracy of 90% and Kappa index of 86%, indicating excellent correctness of the classification model. The classification model proved to be effective in verifying the temporal and spatial land cover change, making it possible to identify places with the vegetation that was most affected and susceptible to degradation and generation of political support to minimize damage to the Caatinga Biome.


2019 ◽  
Vol 3 (2) ◽  
pp. 127-135
Author(s):  
Ibnu R Pattilouw ◽  
G Mardiatmoko ◽  
Ferad Puturuhu

The objectives of this study are: identifying land cover, analyzing land cover change, calculating the rate of forest degradation and deforestation, and determining forest management policies. This research was conducted using remote sensing methods and GIS for obtaining land cover change data for several years and conducting mapping. From the research conducted, the results of the classification of forest land cover using Landsat 8 OLI / TIRS imagery in 2013, 2016 and 2018 consisted of forests, shrubs, reeds, swamps, rivers and open land. The highest land cover change that occurred in 2013 up to 2016 covered forests turned into open land amounting to 12261.75 ha. Shrubs into open land also experienced a large change of 12912.25 ha. Forests that have been degraded since 2013-2016 covering an area of ​​17703.07 ha,


2017 ◽  
Vol 4 (2) ◽  
pp. 49-56
Author(s):  
Abrham Tezera Gessesse ◽  
Tilashwork Chanie ◽  
Tesfaye Feyisa ◽  
Abdlesemed Jemal

Land use, which is use of land by human for different purposes, is influenced by two broad sets of forces human needs (socio-economic) and environmental features and processes (biophysical). The study was carried out at Andit Tid watershed one of SCRP research unit founded in 1982, located on 390 43’E 9048’N.  This research has aimed to assess the trend and main driving force of land use and land cover change (LULCC) within the catchment / watershed during the last two decades and its impact on soil erosion. Structural questioner was used to collect social data from 8% of the total household. Landsat 5 and Landsat 8 Enhanced Thematic Mapper (ETM) and supervised image classification used to identify land use/ land cover change of the study area for 1994 and 2014 years, respectively. TESTMAIN and SPSS version 16 Statistical software’s were used for Soil loss calculation and social data analysis, respectively. The result indicates that, there is expansion of cultivated land by 11.33% (44.55ha) while reduction in natural shrub lands by 7.3 % (35.73ha). The main driving forces of land use land cover change are high number of family member, small land holding size and minimum asset own per household, lower educational level of the household, the household mainly occupied on agriculture and there is lack of animal feed.  This change forced farmers to collect cereal crops based on suitability area, sale livestock, use organic and inorganic fertilizer and use improved variety due to low crop productivity. The LULC change has an impact on decline soil fertility, cause serious soil erosion problem with in farmland/watershed. The result also indicated that soil loss reached 3655 ton per annum from the watershed. Therefore, proper handling and land use system need to be implemented, rainwater harvesting structures and soil and water conservation practice need to be encouraged in order reduce soil loss.


Sign in / Sign up

Export Citation Format

Share Document