scholarly journals Application of Seasonal Autoregressive Moving Average Models to Analysis and Forecasting of Time Series Monthly Rainfall Patterns in Embu County, Kenya

Author(s):  
Tartisio Njoki Filder ◽  
Moses Mahugu Muraya ◽  
Robert Mathenge Mutwiri

Rainfall is of critical importance for many people, particularly those whose livelihoods depend on rain-fed agriculture. Predicting the trend of rainfall is a difficult task, and statistical approaches such as time series analysis provide a means for predicting the patterns of rainfall. The models also offer the potential to improve areas such as increased food production, profitability, and improved food security policing. However, these forecasts and information systems may, in some instances, not be suitable for direct use by stakeholders in their decision-making. The objective of this study was to investigate rainfall variability and develop a Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model for fitting the monthly rainfall using time series data. Secondary monthly data from 1998 to 2017 for Embu County was collected from the Kenya Meteorological Department, Embu and recorded into an excel sheet. R-software was utilized to analyse data for descriptive statistics, rainfall variability, and model fitting. The coefficient of variation for annual and seasonal rainfall was calculated. The Box Jenkin's ARIMA modelling procedure (model identification, model estimation, model validation) was used to determine the best models for the data. The main study findings indicated the existence of annual variability of 34%, March-April-May rainfall variability of 44%, and October-November-December variability of 44%. A first-order differenced SARIMA (1, 1, 1) (0, 1, 2)12 model with an AIC score of 9.99356 was found suitable for predicting rainfall pattern in Embu, County. The study outcome revealed that Embu County experiences high seasonal and rainfall variation of rainfall, thus requires a reliable model for better prediction. 

MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


The challenging endeavor of a time series forecast model is to predict the future time series data accurately. Traditionally, the fundamental forecasting model in time series analysis is the autoregressive integrated moving average model or the ARIMA model requiring a model identification of a three-component vector which are the autoregressive order, the differencing order, and the moving average order before fitting coefficients of the model via the Box-Jenkins method. A model identification is analyzed via the sample autocorrelation function and the sample partial autocorrelation function which are effective tools for identifying the ARMA order but it is quite difficult for analysts. Even though a likelihood based-method is presented to automate this process by varying the ARIMA order and choosing the best one with the smallest criteria, such as Akaike information criterion. Nevertheless the obtained ARIMA model may not pass the residual diagnostic test. This paper presents the residual neural network model, called the self-identification ResNet-ARIMA order model to automatically learn the ARIMA order from known ARIMA time series data via sample autocorrelation function, the sample partial autocorrelation function and differencing time series images. In this work, the training time series data are randomly simulated and checked for stationary and invertibility properties before they are used. The result order from the model is used to generate and fit the ARIMA model by the Box-Jenkins method for predicting future values. The whole process of the forecasting time series algorithm is called the self-identification ResNet-ARIMA algorithm. The performance of the residual neural network model is evaluated by Precision, Recall and F1-score and is compared with the likelihood basedmethod and ResNET50. In addition, the performance of the forecasting time series algorithm is applied to the real world datasets to ensure the reliability by mean absolute percentage error, symmetric mean absolute percentage error, mean absolute error and root mean square error and this algorithm is confirmed with the residual diagnostic checks by the Ljung-Box test. From the experimental results, the new methodologies of this research outperforms other models in terms of identifying the order and predicting the future values.


2017 ◽  
Vol 8 (3) ◽  
pp. 154
Author(s):  
Kaiying Sun

In this paper, a hybrid ARIMA-GARCH model is proposed to model and predict the equity returns for three US benchmark indices: Dow Transportation, S&P 500 and VIX. Equity returns are univariate time series data sets, one of the methods to predict them is using the Auto-Regressive Integrated Moving Average (ARIMA) models. Despite the fact that the ARIMA models are powerful and flexible, they are not be able to handle the volatility and nonlinearity that are present in the time series data. However, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are designed to capture volatility clustering behavior in time series. In this paper, we provide motivations and descriptions of the hybrid ARIMA-GARCH model. A complete data analysis procedure that involves a series of hypothesis testings and a model fitting procedure using the Akaike Information Criterion (AIC) is provided in this paper as well. Simulation results of out of sample predictions are also provided in this paper as a reference.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


2021 ◽  
Vol 11 (8) ◽  
pp. 3561
Author(s):  
Diego Duarte ◽  
Chris Walshaw ◽  
Nadarajah Ramesh

Across the world, healthcare systems are under stress and this has been hugely exacerbated by the COVID pandemic. Key Performance Indicators (KPIs), usually in the form of time-series data, are used to help manage that stress. Making reliable predictions of these indicators, particularly for emergency departments (ED), can facilitate acute unit planning, enhance quality of care and optimise resources. This motivates models that can forecast relevant KPIs and this paper addresses that need by comparing the Autoregressive Integrated Moving Average (ARIMA) method, a purely statistical model, to Prophet, a decomposable forecasting model based on trend, seasonality and holidays variables, and to the General Regression Neural Network (GRNN), a machine learning model. The dataset analysed is formed of four hourly valued indicators from a UK hospital: Patients in Department; Number of Attendances; Unallocated Patients with a DTA (Decision to Admit); Medically Fit for Discharge. Typically, the data exhibit regular patterns and seasonal trends and can be impacted by external factors such as the weather or major incidents. The COVID pandemic is an extreme instance of the latter and the behaviour of sample data changed dramatically. The capacity to quickly adapt to these changes is crucial and is a factor that shows better results for GRNN in both accuracy and reliability.


Vibration ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 25-46 ◽  
Author(s):  
Merten Stender ◽  
Sebastian Oberst ◽  
Norbert Hoffmann

Time recordings of impulse-type oscillation responses are short and highly transient. These characteristics may complicate the usage of classical spectral signal processing techniques for (a) describing the dynamics and (b) deriving discriminative features from the data. However, common model identification and validation techniques mostly rely on steady-state recordings, characteristic spectral properties and non-transient behavior. In this work, a recent method, which allows reconstructing differential equations from time series data, is extended for higher degrees of automation. With special focus on short and strongly damped oscillations, an optimization procedure is proposed that fine-tunes the reconstructed dynamical models with respect to model simplicity and error reduction. This framework is analyzed with particular focus on the amount of information available to the reconstruction, noise contamination and nonlinearities contained in the time series input. Using the example of a mechanical oscillator, we illustrate how the optimized reconstruction method can be used to identify a suitable model and how to extract features from uni-variate and multivariate time series recordings in an engineering-compliant environment. Moreover, the determined minimal models allow for identifying the qualitative nature of the underlying dynamical systems as well as testing for the degree and strength of nonlinearity. The reconstructed differential equations would then be potentially available for classical numerical studies, such as bifurcation analysis. These results represent a physically interpretable enhancement of data-driven modeling approaches in structural dynamics.


2018 ◽  
Vol 29 (11) ◽  
pp. 1850109 ◽  
Author(s):  
Emrah Oral ◽  
Gazanfer Unal

This leading primary study is about modeling multifractal wavelet scale time series data using multiple wavelet coherence (MWC), continuous wavelet transform (CWT) and multifractal detrended fluctuation analysis (MFDFA) and forecasting with vector autoregressive fractionally integrated moving average (VARFIMA) model. The data is acquired from Yahoo Finances!, which is composed of 1671 daily stock market of eastern (NIKKEI, TAIEX, KOPSI) and western (SP500, FTSE, DAX) markets. Once the co-movement dependencies on time-frequency space are determined with MWC, the coherent data is extracted out of raw data at a certain scale by using CWT. The multifractal behavior of the extracted series is verified by MFDFA and its local Hurst exponents have been calculated obtaining root mean square of residuals at each scale. This inter-calculated fluctuation function time series has been re-scaled and used to estimate the process with VARFIMA model and forecasted accordingly. The results have shown that the direction of price change is determined without difficulty and the efficiency of forecasting has been substantially increased using highly correlated multifractal wavelet scale time series data.


2019 ◽  
Vol 11 (21) ◽  
pp. 2558 ◽  
Author(s):  
Emily Myers ◽  
John Kerekes ◽  
Craig Daughtry ◽  
Andrew Russ

Agricultural monitoring is an important application of earth-observing satellite systems. In particular, image time-series data are often fit to functions called shape models that are used to derive phenological transition dates or predict yield. This paper aimed to investigate the impact of imaging frequency on model fitting and estimation of corn phenological transition timing. Images (PlanetScope 4-band surface reflectance) and in situ measurements (Soil Plant Analysis Development (SPAD) and leaf area index (LAI)) were collected over a corn field in the mid-Atlantic during the 2018 growing season. Correlation was performed between candidate vegetation indices and SPAD and LAI measurements. The Normalized Difference Vegetation Index (NDVI) was chosen for shape model fitting based on the ground truth correlation and initial fitting results. Plot-average NDVI time-series were cleaned and fit to an asymmetric double sigmoid function, from which the day of year (DOY) of six different function parameters were extracted. These points were related to ground-measured phenological stages. New time-series were then created by removing images from the original time-series, so that average temporal spacing between images ranged from 3 to 24 days. Fitting was performed on the resampled time-series, and phenological transition dates were recalculated. Average range of estimated dates increased by 1 day and average absolute deviation between dates estimated from original and resampled time-series data increased by 1/3 of a day for every day of increase in average revisit interval. In the context of this study, higher imaging frequency led to greater precision in estimates of shape model fitting parameters used to estimate corn phenological transition timing.


Sign in / Sign up

Export Citation Format

Share Document