Modeling and forecasting multifractal wavelet scale: Western market versus eastern market

2018 ◽  
Vol 29 (11) ◽  
pp. 1850109 ◽  
Author(s):  
Emrah Oral ◽  
Gazanfer Unal

This leading primary study is about modeling multifractal wavelet scale time series data using multiple wavelet coherence (MWC), continuous wavelet transform (CWT) and multifractal detrended fluctuation analysis (MFDFA) and forecasting with vector autoregressive fractionally integrated moving average (VARFIMA) model. The data is acquired from Yahoo Finances!, which is composed of 1671 daily stock market of eastern (NIKKEI, TAIEX, KOPSI) and western (SP500, FTSE, DAX) markets. Once the co-movement dependencies on time-frequency space are determined with MWC, the coherent data is extracted out of raw data at a certain scale by using CWT. The multifractal behavior of the extracted series is verified by MFDFA and its local Hurst exponents have been calculated obtaining root mean square of residuals at each scale. This inter-calculated fluctuation function time series has been re-scaled and used to estimate the process with VARFIMA model and forecasted accordingly. The results have shown that the direction of price change is determined without difficulty and the efficiency of forecasting has been substantially increased using highly correlated multifractal wavelet scale time series data.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 891 ◽  
Author(s):  
Xike Zhang ◽  
Gui Zhang ◽  
Luo Qiu ◽  
Bo Zhang ◽  
Yurong Sun ◽  
...  

Multifractal detrended fluctuation analysis (MFDFA) method can examine higher-dimensional fractal and multifractal characteristics hidden in time series. However, removal of local trends in MFDFA is based on discontinuous polynomial fitting, resulting in pseudo-fluctuation errors. In this paper, we propose a two-stage modified MFDFA for multifractal analysis. First, an overlap moving window (OMW) algorithm is introduced to divide time series of the classic MFDFA method. Second, detrending by polynomial fitting local trend in traditional MFDFA is replaced by ensemble empirical mode decomposition (EEMD)-based local trends. The modified MFDFA is named OMW-EEMD-MFDFA. Then, the performance of the OMW-EEMD-MFDFA method is assessed by extensive numeric simulation experiments based on a p-model of multiplicative cascading process. The results show that the modified OMW-EEMD-MFDFA method performs better than conventional MFDFA and OMW-MFDFA methods. Lastly, the modified OMW-EEMD-MFDFA method is applied to explore multifractal characteristics and multifractal sources of daily precipitation time series data at the Mapoling and Zhijiang stations in Dongting Lake Basin. Our results showed that the scaling properties of the daily precipitation time series at the two stations presented a long-range correlation, showing a long-term persistence of the previous state. The strong q-dependence of H ( q ) and τ ( q ) indicated strong multifractal characteristics in daily precipitation time series data at the two stations. Positive Δ f values demonstrate that precipitation may have a local increasing trend. Comparing the generalized Hurst exponent and the multifractal strength of the original precipitation time series data with its shuffled and surrogate time series data, we found that the multifractal characteristics of the daily precipitation time series data were caused by both long-range correlations between small and large fluctuations and broad probability density function, but the broad probability density function was dominant. This study may be of practical and scientific importance in regional precipitation forecasting, extreme precipitation regulation, and water resource management in Dongting Lake Basin.


2021 ◽  
Vol 11 (8) ◽  
pp. 3561
Author(s):  
Diego Duarte ◽  
Chris Walshaw ◽  
Nadarajah Ramesh

Across the world, healthcare systems are under stress and this has been hugely exacerbated by the COVID pandemic. Key Performance Indicators (KPIs), usually in the form of time-series data, are used to help manage that stress. Making reliable predictions of these indicators, particularly for emergency departments (ED), can facilitate acute unit planning, enhance quality of care and optimise resources. This motivates models that can forecast relevant KPIs and this paper addresses that need by comparing the Autoregressive Integrated Moving Average (ARIMA) method, a purely statistical model, to Prophet, a decomposable forecasting model based on trend, seasonality and holidays variables, and to the General Regression Neural Network (GRNN), a machine learning model. The dataset analysed is formed of four hourly valued indicators from a UK hospital: Patients in Department; Number of Attendances; Unallocated Patients with a DTA (Decision to Admit); Medically Fit for Discharge. Typically, the data exhibit regular patterns and seasonal trends and can be impacted by external factors such as the weather or major incidents. The COVID pandemic is an extreme instance of the latter and the behaviour of sample data changed dramatically. The capacity to quickly adapt to these changes is crucial and is a factor that shows better results for GRNN in both accuracy and reliability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 441 ◽  
Author(s):  
Maria C. Mariani ◽  
Peter K. Asante ◽  
Md Al Masum Bhuiyan ◽  
Maria P. Beccar-Varela ◽  
Sebastian Jaroszewicz ◽  
...  

In this study, we use the Diffusion Entropy Analysis (DEA) to analyze and detect the scaling properties of time series from both emerging and well established markets as well as volcanic eruptions recorded by a seismic station, both financial and volcanic time series data have high frequencies. The objective is to determine whether they follow a Gaussian or Lévy distribution, as well as establish the existence of long-range correlations in these time series. The results obtained from the DEA technique are compared with the Hurst R/S analysis and Detrended Fluctuation Analysis (DFA) methodologies. We conclude that these methodologies are effective in classifying the high frequency financial indices and volcanic eruption data—the financial time series can be characterized by a Lévy walk while the volcanic time series is characterized by a Lévy flight.


2017 ◽  
Vol 04 (04) ◽  
pp. 1750040 ◽  
Author(s):  
Emrah Oral ◽  
Gazanfer Unal

In this paper, dynamic four-dimensional (4D) correlation of eastern and western markets is analyzed. A wavelet-based scale-by-scale analysis method has been introduced to model and forecast stock market data for strongly correlated time intervals. The daily data of stock markets of SP500, FTSE and DAX (western markets) and NIKKEI, TAIEX and KOSPI (eastern markets) are obtained from 2009 to the end of 2016 and their co-movement dependencies on time–frequency space using 4D multiple wavelet coherence (MWC) are determined. Once the data is detached into levels of different frequencies using scale-by-scale continuous wavelet transform, all of the time series possessing the same frequency scale are selected, inversed and forecasted using multivariate model, vector autoregressive moving average (VARMA). It is concluded that the efficiency of forecasting is increased substantially using the same-frequency highly correlated time series obtained by scale-by-scale wavelet transform. Moreover, the increasing or decreasing trend of prospected price shift is foreseen fairly well.


Sign in / Sign up

Export Citation Format

Share Document