scholarly journals The Hamza Distribution with Statistical Properties and Applications

Author(s):  
Ahmad Aijaz ◽  
Muzamil Jallal ◽  
S. Qurat Ul Ain ◽  
Rajnee Tripathi

This paper suggested a new two parameter distribution named as Hamza distribution. A detailed description about the properties of a suggested distribution including moments, moment generating function, deviations about mean and median, stochastic orderings, Bonferroni and Lorenz curves, Renyi entropy, order statistics, hazard rate function and mean residual function has been discussed. The behavior of a probability density function (p.d.f) and cumulative distribution function (c.d.f) have been depicted through graphs. The parameters of the distribution are estimated by the known method of maximum likelihood estimation. The performance of the established distribution have been illustrated through applications, by which we conclude that the established distribution provide better fit.

Author(s):  
Ahmad Aijaz ◽  
Afaq Ahmad ◽  
Rajnee Tripathi

The present paper deals with the inverse analogue of Ailamujia distribution (IAD). Several statistical properties of the newly developed distribution has been discussed such as moments, moment generating function, survival measures, order statistics, shanon entropy, mode and median .The behavior of probability density function (p.d.f) and cumulative distribution function (c.d.f) are illustrated through graphs. The parameter of the newly developed distribution has been estimated by the well known method of maximum likelihood estimation. The importance of the established distribution has been shown through two real life data.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Abdisalam Hassan Muse ◽  
Ahlam H. Tolba ◽  
Eman Fayad ◽  
Ola A. Abu Ali ◽  
M. Nagy ◽  
...  

The goal of this paper is to develop an optimal statistical model to analyze COVID-19 data in order to model and analyze the COVID-19 mortality rates in Somalia. Combining the log-logistic distribution and the tangent function yields the flexible extension log-logistic tangent (LLT) distribution, a new two-parameter distribution. This new distribution has a number of excellent statistical and mathematical properties, including a simple failure rate function, reliability function, and cumulative distribution function. Maximum likelihood estimation (MLE) is used to estimate the unknown parameters of the proposed distribution. A numerical and visual result of the Monte Carlo simulation is obtained to evaluate the use of the MLE method. In addition, the LLT model is compared to the well-known two-parameter, three-parameter, and four-parameter competitors. Gompertz, log-logistic, kappa, exponentiated log-logistic, Marshall–Olkin log-logistic, Kumaraswamy log-logistic, and beta log-logistic are among the competing models. Different goodness-of-fit measures are used to determine whether the LLT distribution is more useful than the competing models in COVID-19 data of mortality rate analysis.


2017 ◽  
Vol 22 (1) ◽  
pp. 66-83 ◽  
Author(s):  
Rama Shanker ◽  
Kamlesh Kumar Shukla ◽  
Hagos Fesshaye

A two-parameter generalization of Sujatha distribution (AGSD), which includes Lindley distribution and Sujatha distribution as particular cases, has been proposed. It's important mathematical and statistical properties including its shape for varying values of parameters, moments, coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, and stress-strength reliability have been discussed. Maximum likelihood estimation method has been discussed for estimating its parameters. AGSD provides better fit than Sujatha, Aradhana, Lindley and exponential distributions for modeling real lifetime data.Journal of Institute of Science and TechnologyVolume 22, Issue 1, July 2017, Page: 66-83


Author(s):  
Jamila Abdullahi ◽  
Umar Kabir Abdullahi ◽  
Terna Godfrey Ieren ◽  
David Adugh Kuhe ◽  
Adamu Abubakar Umar

This article proposed a new distribution referred to as the transmuted odd generalized exponential-exponential distribution (TOGEED) as an extension of the popular odd generalized exponential- exponential distribution by using the Quadratic rank transmutation map (QRTM) proposed and studied by [1]. Using the transmutation map, we defined the probability density function (pdf) and cumulative distribution function (cdf) of the transmuted odd generalized Exponential- Exponential distribution. Some properties of the new distribution were extensively studied after derivation. The estimation of the distribution’s parameters was also done using the method of maximum likelihood estimation. The performance of the proposed probability distribution was checked in comparison with some other generalizations of Exponential distribution using a real life dataset.  


2016 ◽  
Vol 31 (2) ◽  
Author(s):  
Idika E. Okorie ◽  
Anthony C. Akpanta ◽  
Johnson Ohakwe

AbstractThis article introduces a new lifetime distribution called the transmuted Erlang-truncated exponential (TETE) distribution. This new distribution generalizes the two parameter Erlang-truncated exponential (ETE) distribution. Closed form expressions for some of its distributional and reliability properties are provided. The method of maximum likelihood estimation was proposed for estimating the parameters of the TETE distribution. The hazard rate function of the TETE distribution can be constant, increasing or decreasing depending on the value of the transmutation parameter


Author(s):  
S. Kuje ◽  
K. E. Lasisi

In this article, the Quadratic rank transmutation map proposed and studied by Shaw and Buckley [1] is used to construct and study a new distribution called the transmuted Lomax-Exponential distribution (TLED) as an extension of the Lomax-Exponential distribution recently proposed by Ieren and Kuhe [2]. Using the transmutation map, we defined the probability density function and cumulative distribution function of the transmuted Lomax-Exponential distribution. Some properties of the new distribution such as moments, moment generating function, characteristics function, quantile function, survival function, hazard function and order statistics are also studied. The estimation of the distributions’ parameters has been done using the method of maximum likelihood estimation. The performance of the proposed probability distribution is being tested in comparison with some other generalizations of Exponential distribution using a real life dataset. The results obtained show that the TLED performs better than the other probability distributions.


2011 ◽  
Vol 83 (2) ◽  
pp. 357-373 ◽  
Author(s):  
Gauss M Cordeiro ◽  
Alexandre B Simas ◽  
Borko D Stošic

The beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.


2015 ◽  
Vol 9 (1) ◽  
pp. 82-90
Author(s):  
Weijun Cheng ◽  
Teng Chen

In this paper, we investigate the end-to-end performance of a dual-hop fixed gain relaying system with semiblind relay under asymmetric fading environments. In such environments, the wireless links of the considered system undergo asymmetric multipath/shadowing fading conditions, where one link is subject to only the Nakagami-m fading, the other link is subject to the composite Nakagami-lognormal fading which is approximated by using mixture gamma fading model. First, the cumulative distribution function (CDF), the moment generating function (MGF) and the moments of the end-to-end signal-to-noise ratio (SNR) are derived under two asymmetric scenarios. Then, novel closed-form expressions of the outage probability, the average end-to-end SNR, the symbol error rate and the ergodic capacity for the dual-hop system are obtained based on the CDF and the MGF, respectively. Finally, some numerical and simulation results are shown and discussed to validate the accuracy of the analytical results under different scenarios, such as varying average SNR, fading parameters per hop, the choice of the semi-blind gain and the location of relaying nodes.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Sign in / Sign up

Export Citation Format

Share Document