scholarly journals Impacts of the Variations of Aerosols Components and Relative Humidity on the Visibility and Particles Size Distribution of the Desert Atmosphere

Author(s):  
S. U. Yerima ◽  
U. Y. Abdulkarim ◽  
B. I. Tijjani ◽  
U. M. Gana ◽  
M. Idris ◽  
...  

This paper investigates the Impact of relative humidity, varying the concentrations of water-soluble aerosol particle concentrations (WASO), Mineral Nuclei Mode Aerosols Particle Concentration (MINN), mineral accumulation mode, nonspherical (MIAN) aerosol particles concentrations and Mineral Coarse Mode Aerosols Particle Concentration (MICN) on the visibility and particles size distribution of desert aerosols based on microphysical properties of desert aerosols. The microphysical properties (the extinction coefficients, volume mix ratios, dry mode radii and wet mode radii) were extracted from Optical Properties of Aerosols and Clouds (OPAC 4.0) at eight relative humidities, RHs (00 to 99%) and at the spectral visible range of 0.4-0.8mm, the concentrations were varied to obtain five different models for each above-mentioned component. Regression analysis of some standard equations were used to determine the Angstrom exponent (α), the turbidity coefficient (β), the curvature (α2), humidification factor (), the mean exponent of aerosol growth curve (µ) and the mean exponent of aerosol size distributions (n). The values of angstrom exponent (α) were observed to be less than 1 throughout the five models at all RHs for the four studied components, and this signifies the dominance of coarse mode particles over fine mode particles. But the magnitude of the angstrom exponent (α) fluctuates all through the studied components except for WASO which increased with the increase in RH across the models and this also signifies the dominance of coarse mode particles with some traces of fine mode particles. The investigation also revealed that the curvature (α2) has both monomodal (negative signs) and bimodal (positive signs) types of distributions all through the five models and this also signifies the dominance of coarse mode particles with some traces of fine mode particles across the individual models for all the studied components. it was also found that the visibility decreased with the increase in RH and increased with the increase in wavelength. The investigation further revealed that the turbidity coefficient (β) fluctuates with the increase in RH and the particles concentrations, and this might be due to major coagulation and sedimentation. The analysis further found that there is a direct inverse power relation between the humidification factor and the mean exponent of aerosols size distribution with the mean exponent of aerosols growth curve. It was also found that as the magnitude of µ increased for MIAN, MINN and MICN, the effective hygroscopic growth  decreased. For WASO, it was found that as the magnitude of µ decreased, the effective hygroscopic growth  increased with the increase in particles concentrations and RH. The decreased in the magnitude of µ for WASO might be due to the fact that as we increase the non-hygroscopic particles, we decrease the deliquescence. The mean exponent of aerosol size distribution (n) being less than 3 shows foggy condition of the desert atmosphere the four investigated components and five studied models.

2009 ◽  
Vol 9 (16) ◽  
pp. 6175-6189 ◽  
Author(s):  
X. Yang ◽  
M. Wenig

Abstract. This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution, which helps understand local aerosol properties, variation, hygroscopic growth and coagulation. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. Data validation made using MODIS and local AERONET shows agreement. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~3 μm respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine mode aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine mode aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine mode aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions appears to support the hypothesis that it is mainly due to the fine mode aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce larger aerosols under high fine aerosol conditions. The continental outflow with transported aging aerosols and biomass burning might have also contributed to this additional mode.


2009 ◽  
Vol 9 (2) ◽  
pp. 8341-8375 ◽  
Author(s):  
X. Yang ◽  
M. Wenig

Abstract. This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~6 μm, respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions indicates that it is mainly due to the fine aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce more large aerosols under high fine aerosol conditions. The continental outflow with transported ageing aerosols and biomass burning might have also contributed to this additional mode.


2012 ◽  
Vol 12 (5) ◽  
pp. 11941-11978
Author(s):  
D. Pérez-Ramírez ◽  
H. Lyamani ◽  
F. J. Olmo ◽  
D. N. Whiteman ◽  
L. Alados-Arboledas

Abstract. This works present the first analysis of long-term day- and night-time columnar aerosol optical properties. To this end we have used a combination of sun and star photometer measurements at the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain) from 2007 to 2010. For the whole study period, mean aerosol optical depth (AOD) at 440 nm (± standard deviation) is 0.18 ± 0.10 and 0.19 ± 0.11 for day- and night-time, respectively, while the mean Angström exponent (α) is 1.0 ± 0.4 and 0.9 ± 0.4 for day- and night-time. The ANOVA statistical tests reveal that there are no significant differences between the AOD and α obtained at day-time and those obtained at night-time. Additionally, the mean day-time values of AOD and α obtained during this period are within the values obtained in the surrounding AERONET stations. On the other hand, AOD presents an evident seasonal pattern characterized by large values in summer (mean values of 0.20 ± 0.10 both at day- and night-time) and low values in winter (mean values of 0.15 ± 0.09 at day-time and 0.17 ± 0.10 at night-time). The Angström exponent presents clear seasonal pattern with low values in summer (mean values of 0.8 ± 0.4 and 0.9 ± 0.4 at day- and night-time) and relatively large values in winter (mean values of 1.2 ± 0.4 and 1.0 ± 0.3 at day- and night-time). These seasonal patterns are explained by the differences in the meteorological conditions and by the differences in the strength of aerosol sources during day and night. To take more insight about the changes in aerosol particles between day and night, the spectral difference of the Angström exponent (δα) as function of α is also studied. This analysis reveals an increase in the fine mode radius and in the fine mode contribution to AOD during night-time, being more remarkable in summer seasons. These changes are explained by the changes in the local aerosol source emissions and meteorological conditions between day- and night-time, as well as aerosol aging processes.


2007 ◽  
Vol 7 (3) ◽  
pp. 7347-7397 ◽  
Author(s):  
D. G. Kaskaoutis ◽  
H. D. Kambezidis ◽  
N. Hatzianastassiou ◽  
P. G. Kosmopoulos ◽  
K. V. S. Badarinath

Abstract. The Ångström exponent, α, is often used as a qualitative indicator of aerosol particle size. In this study, aerosol optical depth (AOD) and Ångström exponent (α) data were analyzed to obtain information about the adequacy of the simple use of the Ångström exponent for characterizing aerosols, and for exploring possibilities for a more efficient characterization of aerosols. This was made possible by taking advantage of the spectral variation of α, the so-called curvature. The data were taken from four selected AERONET stations, which are representative of four aerosol types, i.e. biomass burning, pollution, desert dust and maritime. Using the least-squares method, the Ångström-α was calculated in the spectral interval 340–870 nm, along with the coefficients α1 and α2 of the second order polynomial fit to the plotted logarithm of AOD versus the logarithm of wavelength, and the second derivative of α. The results show that the spectral curvature can provide important additional information about the different aerosol types, and can be effectively used to discriminate between them, since the fine-mode particles exhibit negative curvature, while the coarse-mode aerosols positive. In addition, the curvature has always to be taken into account in the computations of Ångström exponent values in the spectral intervals 380–440 nm and 675–870 nm, since fine-mode aerosols exhibit larger α675–870 than α380–440 values, and vice-versa for coarse-mode particles. A second-order polynomial fit simulates the spectral dependence of the AODs very well, while the associated constant term varies proportionally to the aerosol type. The correlation between the coefficients α1 and α2 of the second-order polynomial fit and the Ångström exponent α, and the atmospheric turbidity, is further investigated. The obtained results reveal important features, which can be used for better discriminating between different aerosol types.


2012 ◽  
Vol 12 (20) ◽  
pp. 9719-9738 ◽  
Author(s):  
D. Pérez-Ramírez ◽  
H. Lyamani ◽  
F. J. Olmo ◽  
D. N. Whiteman ◽  
L. Alados-Arboledas

Abstract. This work presents the first analysis of long-term correlative day-to-night columnar aerosol optical properties. The aim is to better understand columnar aerosol dynamic from ground-based observations, which are poorly studied until now. To this end we have used a combination of sun-and-star photometry measurements acquired in the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain) from 2007 to 2010. For the whole study period, mean aerosol optical depth (AOD) around 440 nm (± standard deviation) is 0.18 ± 0.10 and 0.19 ± 0.11 for daytime and nighttime, respectively, while the mean Angström exponent (α) is 1.0 ± 0.4 and 0.9 ± 0.4 for daytime and nighttime. The ANOVA statistical tests reveal that there are no significant differences between AOD and α obtained at daytime and those at nighttime. Additionally, the mean daytime values of AOD and α obtained during this study period are coherent with the values obtained in the surrounding AERONET stations. On the other hand, AOD around 440 nm present evident seasonal patterns characterised by large values in summer (mean value of 0.20 ± 0.10 both at daytime and nighttime) and low values in winter (mean value of 0.15 ± 0.09 at daytime and 0.17 ± 0.10 at nighttime). The Angström exponents also present seasonal patterns, but with low values in summer (mean values of 0.8 ± 0.4 and 0.9 ± 0.4 at day- and night-time) and relatively large values in winter (mean values of 1.2 ± 0.4 and 1.0 ± 0.3 at daytime and nighttime). These seasonal patterns are explained by the differences in the meteorological conditions and by the differences in the strength of the aerosol sources. To take more insight about the changes in aerosol particles between day and night, the spectral differences of the Angström exponent as function of the Angström exponent are also studied. These analyses reveal increases of the fine mode radius and of the fine mode contribution to AOD during nighttime, being more remarkable in the summer seasons. These variations are explained by the changes of the local aerosol sources and by the meteorological conditions between daytime and nighttime, as well as aerosol aging processes. Case studies during summer and winter for different aerosol loads and types are also presented to clearly illustrate these findings.


2005 ◽  
Vol 5 (6) ◽  
pp. 11703-11728 ◽  
Author(s):  
V. Aaltonen ◽  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
J. Hatakka ◽  
...  

Abstract. Three years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm−1 with an average of 7.1±8.6 Mm−1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4–5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas.


2019 ◽  
Vol 19 (24) ◽  
pp. 15483-15502 ◽  
Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Krista Luoma ◽  
Helmi Keskinen ◽  
...  

Abstract. The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between NCCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (σsp) of PM10 particles. The analysis first showed that the dependence of NCCN on supersaturation (SS) can be described by a logarithmic fit in the range SS <1.1 %, without any theoretical reasoning. The relationship between NCCN and AOPs was parameterized as NCCN≈((286±46)SAE ln(SS/(0.093±0.006))(BSF − BSFmin) + (5.2±3.3))σsp, where BSFmin is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS ≈0.1 %), the average bias, defined as the ratio of the AOP-derived and measured NCCN, varied from ∼0.7 to ∼1.9 at most sites except at a Himalayan site where the bias was >4. At SS >0.4 % the average bias ranged from ∼0.7 to ∼1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, ∼1.4–1.9. In other words, at SS >0.4 % NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured NCCN varied from ∼0.5 to ∼0.8. To study the physical explanation of the relationships between NCCN and AOPs, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation showed that the relationships of NCCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of NCCN and AOPs were similar to those of the observed ones.


2021 ◽  
Vol 248 ◽  
pp. 105217
Author(s):  
Ja-Ho Koo ◽  
Juhee Lee ◽  
Jhoon Kim ◽  
Thomas F. Eck ◽  
David M. Giles ◽  
...  

2018 ◽  
Vol 11 (12) ◽  
pp. 6761-6784 ◽  
Author(s):  
Paola Formenti ◽  
Lydie Mbemba Kabuiku ◽  
Isabelle Chiapello ◽  
Fabrice Ducos ◽  
François Dulac ◽  
...  

Abstract. The western Mediterranean atmosphere is impacted by a variety of aerosol sources, producing a complex and variable mixture of natural and anthropogenic particles, with different chemical and physical properties. Satellite sensors provide a useful global coverage of aerosol parameters but through indirect measurements that require careful validation. Here we present the results of a long-term regional scale analysis of the full dataset (March 2005 and October 2013) of POLDER-3/PARASOL ocean operational retrievals of the total, fine, and coarse aerosol optical depth (AOD, AODF, and AODC), Ångström exponent (AE), and the spherical or non-spherical partition of coarse-mode AOD (AODCS and AODCNS), respectively. The evaluation is performed using data from 17 coastal and insular ground-based AERONET sites on one side, and airborne vertical profiles of aerosol extinction and number size distribution obtained by the SAFIRE ATR-42 aircraft operated in the area during summer 2012 and 2013 on the other side. This study provides the first regional evaluation of uncertainties of the POLDER-3 products, and highlights their quality. The POLDER-3 Ångström exponent, representing AOD spectral dependence in link with the aerosol particle size distribution, is biased towards small values. This bias, however, does not prevent using AE for classifying the regional aerosol laden air masses. AODF corresponds to particles smaller than 0.6–0.8 µm in diameter and appears suitable to monitor the aerosol submicron fraction from space. We also provide an original validation of POLDER-3 AODC and its spherical or non-spherical partition, which shows agreement within 25 % with AERONET shape retrievals when the aerosol coarse fraction dominates.


Sign in / Sign up

Export Citation Format

Share Document