Some Implications of a Scale Invariant Model of Statistical Mechanics, Kinetic Theory of Ideal Gas, and Riemann Hypothesis

Author(s):  
Siavash H. Sohrab
2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Siavash H. Sohrab

A scale-invariant model of statistical mechanics is applied to describe modified forms of zeroth, first, second, and third laws of classical thermodynamics. Following Helmholtz, the total thermal energy of the thermodynamic system is decomposed into free heat U and latent heat pV suggesting the modified form of the first law of thermodynamics Q = H = U + pV. Following Boltzmann, entropy of ideal gas is expressed in terms of the number of Heisenberg–Kramers virtual oscillators as S = 4 Nk. Through introduction of stochastic definition of Planck and Boltzmann constants, Kelvin absolute temperature scale T (degree K) is identified as a length scale T (m) that is related to de Broglie wavelength of particle thermal oscillations. It is argued that rather than relating to the surface area of its horizon suggested by Bekenstein (1973, “Black Holes and Entropy,” Phys. Rev. D, 7(8), pp. 2333–2346), entropy of black hole should be related to its total thermal energy, namely, its enthalpy leading to S = 4Nk in exact agreement with the prediction of Major and Setter (2001, “Gravitational Statistical Mechanics: A Model,” Classical Quantum Gravity, 18, pp. 5125–5142).


2021 ◽  
Vol 20 ◽  
pp. 56-65
Author(s):  
Siavash H. Sohrab

A scale invariant model of statistical mechanics is applied for a comparative study of Boltzmann’s entropy in thermodynamics versus Shannon’s entropy in information theory. The implications of the model to the objective versus subjective aspects of entropy as well as Nernst-Planck statement of the third law of thermodynamics are also discussed


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. de Oliveira ◽  
Samuraí Brito ◽  
L. R. da Silva ◽  
Constantino Tsallis

AbstractBoltzmann–Gibbs statistical mechanics applies satisfactorily to a plethora of systems. It fails however for complex systems generically involving nonlocal space–time entanglement. Its generalization based on nonadditive q-entropies adequately handles a wide class of such systems. We show here that scale-invariant networks belong to this class. We numerically study a d-dimensional geographically located network with weighted links and exhibit its ‘energy’ distribution per site at its quasi-stationary state. Our results strongly suggest a correspondence between the random geometric problem and a class of thermal problems within the generalised thermostatistics. The Boltzmann–Gibbs exponential factor is generically substituted by its q-generalisation, and is recovered in the $$q=1$$ q = 1 limit when the nonlocal effects fade away. The present connection should cross-fertilise experiments in both research areas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin Yadin ◽  
Benjamin Morris ◽  
Gerardo Adesso

AbstractThe classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an “ignorant” observer, who cannot distinguish the gases, has no way of extracting work by mixing them. Moving the thought experiment into the quantum realm, we reveal new and surprising behaviour: the ignorant observer can extract work from mixing different gases, even if the gases cannot be directly distinguished. Moreover, in the macroscopic limit, the quantum case diverges from the classical ideal gas: as much work can be extracted as if the gases were fully distinguishable. We show that the ignorant observer assigns more microstates to the system than found by naive counting in semiclassical statistical mechanics. This demonstrates the importance of accounting for the level of knowledge of an observer, and its implications for genuinely quantum modifications to thermodynamics.


Physics Today ◽  
1973 ◽  
Vol 26 (12) ◽  
pp. 57-59 ◽  
Author(s):  
C. V. Heer ◽  
E. A. Mason

Sign in / Sign up

Export Citation Format

Share Document