An Analytical Interpretation of the High Temperature Linear Contact between Composite Materials Reinforced with Glass Fibers and Steel: An Advance Study

Author(s):  
Dorin Rus ◽  
Virgil Florescu ◽  
Florin Bausic ◽  
Robert Ursache ◽  
Anca Sasu
2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2011 ◽  
Vol 71-78 ◽  
pp. 3591-3594 ◽  
Author(s):  
Xiao Lu Wang ◽  
Xiao Xiong Zha

Experimental results on tensile mechanics properties of GFRP bars at high temperatures are present in this paper. Thirty commercially produced GFRP tensile specimens of 8mm diameter were tested at high temperature ranging from 10°Cup to 500°C. Tensile test result indicates that, the ultimate tensile stress has significant reduction at two temperature zones, one is glass transition temperature of epoxy resin (80-120°C), with strength degradation 22%, the second is the soften temperature of glass fibers(about 400°C), the strength decrease drastically with almost linear rate and remained 33% residual strength at 500°C. The elastic modulus remained unchanged until glass transition temperature of epoxy resin, and the modulus declined linearly with the temperature elevating. Stress-strain relationships of GFRP bars exhibit liner performance even at high temperatures.


Author(s):  
A. B. Baranov ◽  
T. I. Andreeva ◽  
I. D. Simonov-Emelʼyanov ◽  
O. E. Peksimov

In the course of this study, compositions and designed structures for the polysulfone (PSF) and short glass fibers systems were calculated. Additionally, disperse-filled polymer composite materials (DFPCM) based on PSF-190 were classified in accordance with their respective structures, and the optimal amount of glass fiber (13.5–18.5 vol %) was determined. This article describes the production of DFPCM using PSF and a short glass fiber with a twin-screw extruder (Labtech Engineering Company LTD, model Scientific FIC 20-40). Furthermore, optimal mixing parameters for the creation of composites wherein the glass fiber length exceeds the critical length (lcr) were established. The critical length was calculated, and the curves for fiber size distribution of polysulfone composites were depicted, and a difference in fiber concentration between the dispenser and the extrusion head (up to ~10–15%) was found when the fiber content was at 18–25 vol %. For the first time, optimal parameters (which pertain to medium-filled dispersions) for the structure of DFPCM based on PSF and short glass fiber are able to be demonstrated. 


Sign in / Sign up

Export Citation Format

Share Document