scholarly journals Efficacy of Bio-inoculants Arbuscular Mycorrhizal Fungi and Phosphorus on Micronutrient Status of Leaves and Soil in Litchi (Litchi chinensis Sonn.) Layers in Nursery Condition

Author(s):  
Priyanka Kumari ◽  
R. R. Singh ◽  
Ruby Rani ◽  
Mahendra Singh ◽  
Uday Kumar

Litchi (Litchi chinensis Sonn.) originated from South China, it is sub-tropical evergreen fruit crops, especially grown on the marginal climate of tropics and subtropics. It is delicious juicy fruit of India having excellent nutritional quality, pleasant flavoured, good amount of antioxidant and vitamins C, vitamin B-complex and phytonutrients flavonoids. It has a great potential to earn foreign exchange in the national and international market through export. Arbuscular mycorrhizal (AM) infection is a common association between plant roots and microorganisms. It is responsible for increasing plant nutrient uptake and also increases in macro and micronutrients in leaf. Therefore, the present work has been analyzed macro and micro nutrients from soil and leaf, after 60, 90 and 120 days after inoculation of two bio-inoculants with phosphorus (SSP) including nine treatments with three replications. After 120 days of inoculation both the species of mycorrhizal combination with phosphorus application were very effective. Highest Copper content is (10.99 ppm), Zinc (33.17 ppm), Iron (121.47 ppm) and Manganese (15.33 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil) which is gradually increases. The soil nutrient content gradually decreased with time duration but no- significant difference was found among treatments after 120 days inoculation. After 120 days potting result was found that the Copper content is (1.70 ppm), Zinc (3.07 ppm), Iron (7.80 ppm) and Manganese (4.00 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil).this research was undertaken to find out whether Arbuscular mycorrhizal (AM) infection and phosphorus affect the micro-nutrient status of soil and leaves in nursery stage.

2004 ◽  
Vol 55 (5) ◽  
pp. 571 ◽  
Author(s):  
K. Usha ◽  
A. Saxena ◽  
B. Singh

Rhizosphere modification through root exudation is an important attribute that regulates not only the availability of nutrients in the soil but also their acquisition by plants. To test the above, 10-year-old Kinnow mandarin plants budded on Troyer citrange were inoculated with arbuscular mycorrhizal fungi (AMF) (Glomus deserticola) and Azotobacter chroococcum in different combinations with organic-farm-yard manure (FYM) and inorganic fertilisers in February when the root system was active. Plants with FYM alone were treated as a control. In the present investigation, a higher release of organic acids such as malic, citric, shikimic, and fumaric acids was evident from symbiotic roots of Kinnow inoculated with AMF (G. deserticola). Soil pH decreased significantly from 8.5 before the start of the experiment to 6.4 at the end of the experiment in the treatment where G. deserticola was applied with FYM. A decrease in soil EC and organic carbon, and an increase in soil availability of N, P, and K, leaf nutrient status, and fruit yield and quality were observed when the plants were inoculated with G. deserticola compared with all other treatments. This study indicates that G. deserticola, when compared with A. chroococcum, modifies the rhizosphere favourably to improve soil nutrient availability and consequent uptake by plants and thus result in better growth, fruit yield, and quality of Kinnow.


2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Kuntum Febriyantiningrum ◽  
Dwi Oktafitria ◽  
Nia Nurfitria ◽  
Nurul Jadid ◽  
Dewi Hidayati

Mining activities can cause environmental damage, and needs land rehabilitation efforts. One approach to land rehabilitation after mine is with repairing the ecosystem condition by improving the quality of the soil, with increase fertility and enriching soil nutrient content by providing a biofertilizer from microbe, such as mycorrhizal fungi.  This study aims to determine the potential use of vesicular arbuscular mycorrhizal fungus (MVA) as a biofertilizer by examining the effect of MVA on the growth of corn plant (Zea Mays). Applicated indigenus MVA was able to increase the absorption of phosphorus (P) nutrients in the soil by corn plant so it had an effect on increasing the height and diameter of the corn plant stalks. MVA has the potential as a basic material for making biofertilizer, so it can be used to improve soil quality and environment in ex-limestone mining areas.  


2000 ◽  
Vol 77 (12) ◽  
pp. 1833-1841 ◽  
Author(s):  
EW van der Heijden ◽  
M Vosatka

Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats indicate that ectomycorrhizas do not increase their importance in later successional stages. EcM and AM colonization and plant-nutrient status indicate that the relative importance of P and N does not change during succession, but during seasons. Salix repens showed low levels of AM colonization but, nevertheless, even these low levels contributed to covering the P demands of the plant. As a decrease in AM colonization in S. repens at the end of the season coincided with a decrease in AM inoculum potential, the seasonal decline of arbuscular mycorrhiza is caused by changes in plant demand or soil nutrient availability rather than by interference by ectomycorrhiza. Regardless of seasonal shifts and possible interaction between ectomycorrhiza and arbuscular mycorrhiza, both persist in the plant roots during seasons and throughout succession. Differences in the habitat preference of various EcM morphotypes and arbuscular mycorrhiza suggest that mycorrhizal diversity contributes to the broad ecological amplitude of S. repens.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10905
Author(s):  
Guiwu Zou ◽  
Yuanqiu Liu ◽  
Fanqian Kong ◽  
Liqin Liao ◽  
Guanghua Deng ◽  
...  

Both canopy gaps (CG) and arbuscular mycorrhizal fungi (AMF) play key roles in seedling establishment and increasing species diversity in forests. The response of AMF to canopy gaps is poorly understood. To assess the long-term effects of canopy gaps on soil AMF community, we sampled soil from plots in a 50-year Cryptomeria japonica (L.f.) D. Don. plantation, located in Lushan Mountain, subtropical China. We analyzed the AMF community, identified through 454 pyrosequencing, in soil and edaphic characteristics. Both richness and diversity of AMF in CG decreased significantly compared to the closed canopy (CC). The differences of the AMF community composition between CG and CC was also significant. The sharp response of the AMF community appears to be largely driven by vegetation transformation. Soil nutrient content also influenced some taxa, e.g., the low availability of phosphorus increased the abundance of Acaulospora. These results demonstrated that the formation of canopy gaps can depress AMF richness and alter the AMF community, which supported the plant investment hypothesis and accentuated the vital role of AMF–plant symbioses in forest management.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2021 ◽  
Author(s):  
Andreu Cera ◽  
Estephania Duplat ◽  
Gabriel Montserrat-Martí ◽  
Antonio Gómez-Bolea ◽  
Susana Rodríguez-Echeverría ◽  
...  

Abstract Aims Gypsum soils are P-limited atypical soils that harbour a rich endemic flora. These singular soils are usually found in drylands, where plant activity and soil nutrient availability are seasonal. No previous studies have analysed the seasonality of P nutrition and its interaction with the arbuscular mycorrhiza fungi (AMF) colonisation in gypsum plants. Our aim was to evaluate the seasonal changes in plant nutrient status, AMF colonisation and rhizospheric soil nutrient availability in gypsum specialist and generalist species. Methods We evaluated seasonal variation in the proportion of root length colonised by AMF structures (hyphae, vesicules and arbuscules), plant nutrient status (leaf C, N and P and fine root C and N) and rhizospheric soil content (P, organic matter, nitrate and ammonium) of three gypsum specialists and two generalists throughout a year. Results All species showed arbuscules within roots, including species of Caryophyllaceae and Brassicaceae. Root colonisation by arbuscules (AC) was higher in spring than in other seasons, when plants showed high leaf P-requirements. Higher AC was decoupled from inorganic N and P availability in rhizospheric soil, and foliar nutrient content. Generalists showed higher AC than specialists, but only in spring. Conclusions Seasonality was found in AMF colonisation, rhizospheric soil content and plant nutrient status. The mutualism between plants and AMF was highest in spring, when P-requirements are higher for plants, especially in generalists. However, AMF decoupled from plant demands in autumn, when nutrient availability increases in rhizospheric soil.


Author(s):  
Kamrun Nahar Mousomi ◽  
Mohammad Noor Hossain Miah ◽  
Md. Abul Kashem ◽  
Imtiaz Miah

A pot experiment was conducted at the experimental net house of the Department of Soil Science, Sylhet Agricultural University, Sylhet, Bangladesh to observe the effect of fertilizers on yield and nutrient uptake of local aromatic rice varieties during the Aman season of 2015. The experiment was laid out in a Randomized Complete Block Design with three replications. Five local aromatic rice varieties (Kalizira: V1, Muktasail: V2, Nagrasail: V3, Maloti: V4 and Chinigura: V5) and four packages of fertilizers (F1:  Recommended package i.e. 45-10-20-10-0.5 kg ha-1 of N-P-K-S-Zn, F2: 2/3rd of recommended package, F3: 1/3rd of recommended package, and F4: Control) were used. Urea, TSP, MoP, gypsum and ZnSO4 were used as N, P, K, S and Zn source, respectively. According to the treatment, all fertilizers were applied as basal during final pot preparation while urea was applied in two equal splits (one half as basal and another half at 40 DAT). Nutrient content and uptake of the aromatic rice varieties were significantly affected by the application of different fertilizer packages (with few exceptions). Mostly Kalizira (1.10-0.44-2.31-0.67-13.75 g pot-1 of N-P-K-S-Zn) and/or Nagrasail (1.15-0.46-2.70-0.62-11.74 g pot-1 of N-P-K-S-Zn) varieties showed the highest nutrient uptake in grain and straw with recommended package of fertilizers. While in maximum cases Chinigura (0.41-0.16-0.76-0.197-3.17 g pot-1 of N-P-K-S-Zn) was observed to have the lowest with control treatment. In case of post harvest soil nutrient analyses, Kalizira and/or Chinigura variety associated with recommended package of fertilizers showed the highest nutrient status.


Sign in / Sign up

Export Citation Format

Share Document