scholarly journals Potensi Mikoriza Vesikular Arbuskular (MVA) sebagai Biofertilizer pada Tanaman Jagung (Zea mays)

2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Kuntum Febriyantiningrum ◽  
Dwi Oktafitria ◽  
Nia Nurfitria ◽  
Nurul Jadid ◽  
Dewi Hidayati

Mining activities can cause environmental damage, and needs land rehabilitation efforts. One approach to land rehabilitation after mine is with repairing the ecosystem condition by improving the quality of the soil, with increase fertility and enriching soil nutrient content by providing a biofertilizer from microbe, such as mycorrhizal fungi.  This study aims to determine the potential use of vesicular arbuscular mycorrhizal fungus (MVA) as a biofertilizer by examining the effect of MVA on the growth of corn plant (Zea Mays). Applicated indigenus MVA was able to increase the absorption of phosphorus (P) nutrients in the soil by corn plant so it had an effect on increasing the height and diameter of the corn plant stalks. MVA has the potential as a basic material for making biofertilizer, so it can be used to improve soil quality and environment in ex-limestone mining areas.  

Author(s):  
Priyanka Kumari ◽  
R. R. Singh ◽  
Ruby Rani ◽  
Mahendra Singh ◽  
Uday Kumar

Litchi (Litchi chinensis Sonn.) originated from South China, it is sub-tropical evergreen fruit crops, especially grown on the marginal climate of tropics and subtropics. It is delicious juicy fruit of India having excellent nutritional quality, pleasant flavoured, good amount of antioxidant and vitamins C, vitamin B-complex and phytonutrients flavonoids. It has a great potential to earn foreign exchange in the national and international market through export. Arbuscular mycorrhizal (AM) infection is a common association between plant roots and microorganisms. It is responsible for increasing plant nutrient uptake and also increases in macro and micronutrients in leaf. Therefore, the present work has been analyzed macro and micro nutrients from soil and leaf, after 60, 90 and 120 days after inoculation of two bio-inoculants with phosphorus (SSP) including nine treatments with three replications. After 120 days of inoculation both the species of mycorrhizal combination with phosphorus application were very effective. Highest Copper content is (10.99 ppm), Zinc (33.17 ppm), Iron (121.47 ppm) and Manganese (15.33 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil) which is gradually increases. The soil nutrient content gradually decreased with time duration but no- significant difference was found among treatments after 120 days inoculation. After 120 days potting result was found that the Copper content is (1.70 ppm), Zinc (3.07 ppm), Iron (7.80 ppm) and Manganese (4.00 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil).this research was undertaken to find out whether Arbuscular mycorrhizal (AM) infection and phosphorus affect the micro-nutrient status of soil and leaves in nursery stage.


2004 ◽  
Vol 55 (5) ◽  
pp. 571 ◽  
Author(s):  
K. Usha ◽  
A. Saxena ◽  
B. Singh

Rhizosphere modification through root exudation is an important attribute that regulates not only the availability of nutrients in the soil but also their acquisition by plants. To test the above, 10-year-old Kinnow mandarin plants budded on Troyer citrange were inoculated with arbuscular mycorrhizal fungi (AMF) (Glomus deserticola) and Azotobacter chroococcum in different combinations with organic-farm-yard manure (FYM) and inorganic fertilisers in February when the root system was active. Plants with FYM alone were treated as a control. In the present investigation, a higher release of organic acids such as malic, citric, shikimic, and fumaric acids was evident from symbiotic roots of Kinnow inoculated with AMF (G. deserticola). Soil pH decreased significantly from 8.5 before the start of the experiment to 6.4 at the end of the experiment in the treatment where G. deserticola was applied with FYM. A decrease in soil EC and organic carbon, and an increase in soil availability of N, P, and K, leaf nutrient status, and fruit yield and quality were observed when the plants were inoculated with G. deserticola compared with all other treatments. This study indicates that G. deserticola, when compared with A. chroococcum, modifies the rhizosphere favourably to improve soil nutrient availability and consequent uptake by plants and thus result in better growth, fruit yield, and quality of Kinnow.


2019 ◽  
Vol 157 (1) ◽  
pp. 31-44 ◽  
Author(s):  
K. Surendirakumar ◽  
R. R. Pandey ◽  
T. Muthukumar

AbstractDespite the global importance of Capsicum species, there is limited information on the indigenous endomycorrhizal fungal association in this crop. Therefore, the diversity and colonization patterns of arbuscular mycorrhizal fungi (AMF) in roots of Naga King chilli (Capsicum chinense) were assessed during pre-flowering, flowering and fruit ripening growth stages under a sub-tropical shifting cultivation system of North Eastern India. All the roots examined had AMF colonization and the presence of Paris-type arbuscular mycorrhizal morphology is reported for the first time in C. chinense. A total of 11 AMF spore morphotypes were isolated from both field and trap culture soils. Maximum AMF spore density and root colonization were recorded during the pre-flowering and flowering stages, respectively. The influence of Funneliformis geosporum, individually or in combination with Pseudomonas fluorescens and Azotobacter chroococcum, on growth and yield of C. chinense, was evaluated in a pot experiment using sterilized and non-sterilized soils. The application of AMF and P. fluorescens to sterilized soil significantly increased the growth, flower and fruit production, and nutrient content of C. chinense. The highest growth rates and yields of C. chinense in non-sterilized soils were achieved when AMF was combined with both P. fluorescens and A. chroococcum. The results of the current study indicate the value of applying microorganisms to improve plant growth and performance in chillies. One of the mechanisms for this could be the facilitated assimilation of nutrients promoted by AMF and bacterial bioinoculants.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10905
Author(s):  
Guiwu Zou ◽  
Yuanqiu Liu ◽  
Fanqian Kong ◽  
Liqin Liao ◽  
Guanghua Deng ◽  
...  

Both canopy gaps (CG) and arbuscular mycorrhizal fungi (AMF) play key roles in seedling establishment and increasing species diversity in forests. The response of AMF to canopy gaps is poorly understood. To assess the long-term effects of canopy gaps on soil AMF community, we sampled soil from plots in a 50-year Cryptomeria japonica (L.f.) D. Don. plantation, located in Lushan Mountain, subtropical China. We analyzed the AMF community, identified through 454 pyrosequencing, in soil and edaphic characteristics. Both richness and diversity of AMF in CG decreased significantly compared to the closed canopy (CC). The differences of the AMF community composition between CG and CC was also significant. The sharp response of the AMF community appears to be largely driven by vegetation transformation. Soil nutrient content also influenced some taxa, e.g., the low availability of phosphorus increased the abundance of Acaulospora. These results demonstrated that the formation of canopy gaps can depress AMF richness and alter the AMF community, which supported the plant investment hypothesis and accentuated the vital role of AMF–plant symbioses in forest management.


2020 ◽  
Author(s):  
Sergey Blagodatsky ◽  
Miriam Ehret ◽  
Frank Rasche ◽  
Imke Hutter ◽  
Regina Birner ◽  
...  

<p>Unregulated surface gold mining contributes to deforestation and land degradation in Ghana and Burkina Faso (West Africa). In addition, small-scale gold mining uses a technology for gold amalgamation that pollutes the environment with mercury (Hg) and adversely affects human health. In the framework of the recently started Mercury-AMF-project we aim to reduce the environmental damage caused by mercury used in gold mining in Ghana and Burkina Faso. This will be achieved by developing and implementing novel arbuscular mycorrhizal fungi (AMF) - plant systems as a strategy to reclaim mercury-contaminated sites. The cultivation of pioneer plants on contaminated soils can reduce the mercury pollution. Symbiotic mycorrhizal associations of those plants may strengthen the potential to remediate Hg-contaminated soils.</p><p>The implementation of the project is based on the following specific activities:</p><ol><li>Characterization of the arbuscular mycorrhizal fungus (AMF) candidates in the soils of Ghana and Burkina Faso;</li> <li>Development of prototype AMF plant systems as an innovative strategy for the remediation of Hg-contaminated sites;</li> <li>Testing of mycophytoextraction methods to reduce the Hg soil concentration below threshold values;</li> <li>Examination of the return of Hg-contaminated sites to agricultural use and the promotion of sustainable land management in gold mining regions;</li> <li>Set-up of modelling approaches for the efficiency of mycophytoextraction methods and Hg plant uptake;</li> <li>Exploration and communication of institutional and socio-economic framework conditions for the introduction of AMF plant systems.</li> </ol><p>During the first year of the project soil and plant sampling campaigns in Ghana and Burkina Faso were organised for screening the AMF-candidates capable for symbiosis with local plant species and tolerant to the mercury pollution. Clarification of possible mechanisms of phytoremediation is the next essential component of the research: several pathways of decontamination are possible including phytostabilization, phytovolatilization and phytoextraction. Based on the first results, field experimental trials with new AMF-plant systems will be established.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


2021 ◽  
Vol 134 ◽  
pp. 187-196
Author(s):  
M.J. Salomon ◽  
S.J. Watts-Williams ◽  
M.J. McLaughlin ◽  
C.J. Brien ◽  
N. Jewell ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.


1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi


Sign in / Sign up

Export Citation Format

Share Document