scholarly journals Phenotypic Evaluation of Advanced Breeding Lines for Resistance against Bacterial Leaf Blight Disease in Rice (Oryza sativa L.)

Author(s):  
V. Srujana ◽  
M. Balram ◽  
B. Srinivas ◽  
N. Balram

Bacterial Leaf Blight disease epidemically damaged the rice crop. Absence of resistance against BLB disease in MTU1010 is one of the main reason for these epidemics. Thus, there is urgent need to search for resistant source and subsequently, their phenotypic evaluation to validate the resistant source. In this paper discussing about the highlights of phenotypic evaluation of Bacterial Leaf Blight resistance in MTU1010 NIL variety of rice. In the present study, fifty advanced breeding lines along with parents i.e., MTU1010 NIL X Akshayadhan NIL, were screened for bacterial leaf blight disease, Thirty-four breeding lines were shown resistance against bacterial leaf blight disease.

2019 ◽  
Vol 33 (1) ◽  
pp. 440-455 ◽  
Author(s):  
Samuel Chibuike Chukwu ◽  
Mohd Y. Rafii ◽  
Shairul Izan Ramlee ◽  
Siti Izera Ismail ◽  
Yussuf Oladosu ◽  
...  

Euphytica ◽  
2011 ◽  
Vol 187 (3) ◽  
pp. 313-323 ◽  
Author(s):  
R. K. Salgotra ◽  
B. B. Gupta ◽  
Reginald J. Millwood ◽  
Muthukumar Balasubramaniam ◽  
C. N. Stewart

2018 ◽  
Vol 6 (2) ◽  
pp. 134
Author(s):  
Endang Kantikowati ◽  
Ridwan Haris ◽  
Saiful Anwar

The Experiment  was aimed to assess influence of concentration and application of biological agent Paenibacillus polymixa to bacterial leaf blight disease and  black rice yields  (Oryza sativa L.) local varieties The research was conducted in P4S Al Mukhlis   Kiangroke Village, Bandung District, West Java. In December 2016 until April 2017. The experiment used a split-plot design with two factor : 3 application period (W) as the main plot and 4 concentration level (K) as the subplot, thus obtained 12 treatment combinations and each combination was repeated 3 times. Then obtained 36 plot of experiment. Factor I main plot (W) : W1 = morning application (10, 20, 30, 40, 50, 60, 70 days after planting), W2 = daytime (10, 20, 30, 40, 50, 60, 70 days after planting), W3 = afternoon application (10, 20, 30, 40, 50, 60, 70 days after planting) and factor II (K) : K1 = Control, K2 = 5 ml L-1, K3 = 10 ml L-1, K4 = 15 ml L-1. The result showed that the effect of concentration  and time of application of biological agent of Paenibacillus polymixa gave no significant effect on plant height, disease intensity, number of productive tillers, number of the dry grain harvest, number of unhulled grain per panicle, and weight of 1000 filled grains. There was an interaction between concentration and time of application of biological agent of Paenibacillus polymixa to bacterial leaf blight disease intensity at age of 95 DAP, treatment of K3 (10ml L-1) with W1 (morning application)   gave more resistance effect to bacterial leaf blight intensity. 


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2525
Author(s):  
Xuan Wang ◽  
Xinying Guo ◽  
Xixi Ma ◽  
Liang Luo ◽  
Yaoyu Fang ◽  
...  

Brown planthopper, blast, and bacterial blight are the main biotic stressors of rice and can cause a massive loss in rice production. Aroma is an important character of rice quality. It is of far-reaching significance to breed resistant and high-quality varieties using germplasms with objective genes. In this study, the introgression and pyramiding of brown planthopper (BPH), blast, and bacterial leaf blight (BLB) resistance genes and aroma genes into elite rice maintainers and restorers were conducted through conventional cross-breeding coupled with the marker-assisted selection (MAS) breeding method. Single-plant selection was performed from F2 onwards to select desirable recombinants possessing alleles of interest with suitable phenotypes. Respective linked markers were used in each generation from intercrossing to the F7 generation for tracking the presence of targeted genes. A total of 74 improved lines (ILs) have been developed which possess a combination of 1 to 4 genes for BPH, blast, and BLB resistance and aroma. These ILs showed moderate to high resistance to multiple biotic stresses (BPH, blast and BLB) or aromatic fragrance without obvious negative effects on agronomic traits. As multiple resistance and aromatic traits have become significant objectives in rice breeding, these resistance and/or aroma gene introgressed or pyramided lines have important application prospects. Core ideas: (1) marker-assisted breeding was used to pyramid multiple genes for an elite breeding line; (2) improved lines with the introgression of 1–4 genes were developed to achieve high resistance against various biotic stresses and aroma; (3) new lines were used as donor parents to introgress multiple genes in other genetic backgrounds.


Sign in / Sign up

Export Citation Format

Share Document