scholarly journals Development of New Rice (Oryza. sativa L.) Breeding Lines through Marker-Assisted Introgression and Pyramiding of Brown Planthopper, Blast, Bacterial Leaf Blight Resistance, and Aroma Genes

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2525
Author(s):  
Xuan Wang ◽  
Xinying Guo ◽  
Xixi Ma ◽  
Liang Luo ◽  
Yaoyu Fang ◽  
...  

Brown planthopper, blast, and bacterial blight are the main biotic stressors of rice and can cause a massive loss in rice production. Aroma is an important character of rice quality. It is of far-reaching significance to breed resistant and high-quality varieties using germplasms with objective genes. In this study, the introgression and pyramiding of brown planthopper (BPH), blast, and bacterial leaf blight (BLB) resistance genes and aroma genes into elite rice maintainers and restorers were conducted through conventional cross-breeding coupled with the marker-assisted selection (MAS) breeding method. Single-plant selection was performed from F2 onwards to select desirable recombinants possessing alleles of interest with suitable phenotypes. Respective linked markers were used in each generation from intercrossing to the F7 generation for tracking the presence of targeted genes. A total of 74 improved lines (ILs) have been developed which possess a combination of 1 to 4 genes for BPH, blast, and BLB resistance and aroma. These ILs showed moderate to high resistance to multiple biotic stresses (BPH, blast and BLB) or aromatic fragrance without obvious negative effects on agronomic traits. As multiple resistance and aromatic traits have become significant objectives in rice breeding, these resistance and/or aroma gene introgressed or pyramided lines have important application prospects. Core ideas: (1) marker-assisted breeding was used to pyramid multiple genes for an elite breeding line; (2) improved lines with the introgression of 1–4 genes were developed to achieve high resistance against various biotic stresses and aroma; (3) new lines were used as donor parents to introgress multiple genes in other genetic backgrounds.

Author(s):  
K. Alekya ◽  
B. Laxmi Prasanna ◽  
M. Balram ◽  
N. Balram ◽  
P. Gonya Nayak ◽  
...  

Biotic stresses are major threat to rice production. Among biotic stresses, bacterial leaf blight is one of the major diseases affecting rice grain production in rice growing areas. Present investigation was conducted to evaluate phenotypic effect of 50 breeding lines from a cross (Pranahitha//ISM/MTU1010) in glass house at Regional Agricultural Research Station, Jagtial by inoculating Bacterial leaf blight culture (DX-020) by leaf clipping method. Out of these 50 F4 lines evaluated, twenty nine breeding lines showed resistant reaction with disease score of 1. Eleven lines showed moderately resistant reaction with disease score 3. Twenty nine breeding lines that were resistant with disease score 1, had excellent grain yield. Hence, these lines can be advanced to further generations. Thus the present study has demonstrated that phenotypic selection is successful in the glass house and these breeding lines with higher yield levels are expected to perform better in the field trials and further in the farmers fields with the good level of bacterial blight resistance.


Author(s):  
V. Srujana ◽  
M. Balram ◽  
B. Srinivas ◽  
N. Balram

Bacterial Leaf Blight disease epidemically damaged the rice crop. Absence of resistance against BLB disease in MTU1010 is one of the main reason for these epidemics. Thus, there is urgent need to search for resistant source and subsequently, their phenotypic evaluation to validate the resistant source. In this paper discussing about the highlights of phenotypic evaluation of Bacterial Leaf Blight resistance in MTU1010 NIL variety of rice. In the present study, fifty advanced breeding lines along with parents i.e., MTU1010 NIL X Akshayadhan NIL, were screened for bacterial leaf blight disease, Thirty-four breeding lines were shown resistance against bacterial leaf blight disease.


2016 ◽  
Vol 42 (1) ◽  
pp. 31 ◽  
Author(s):  
Jue LOU ◽  
Wen-Qing YANG ◽  
Zhong-Xing LI ◽  
Tian-Kuan LUO ◽  
Yong-Chu XIE ◽  
...  

2018 ◽  
Vol 45 (12) ◽  
pp. 1251 ◽  
Author(s):  
Shasmita ◽  
Harekrushna Swain ◽  
Anuprita Ray ◽  
Pradipta K. Mohapatra ◽  
Ramani K. Sarkar ◽  
...  

Bacterial leaf blight (BLB) is a serious threat for rice (Oryza sativa L.) cultivation caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae. The pathogen mainly damages the leaf chlorophyllous tissue, resulting in poor photosynthesis and causing up to 50% reductions in grain yield. In the present work, we have compared the structural and functional ability of the chloroplast of three varieties of rice with different degrees of susceptibility (TN1, highly susceptible; IR-20, moderately resistant; DV-85, resistant to BLB) treated with riboflavin (1 and 2 mM) and infected with BLB, with chlorophyll fluorescence as a tool. As indicated by the chlorophyll fluorescence technique, the disease progress curve and yield data, riboflavin acted as an effective vitamin for inducing resistance against BLB. Plants treated with riboflavin showed improved PSII activity, more chlorophyll content and higher yield than the diseased plants.


2003 ◽  
Vol 3 (5) ◽  
pp. 478-483
Author(s):  
Mosharraf Hossain . ◽  
Shah Md. Munirur Rah . ◽  
K.M. Khalequzzaman . ◽  
Md. Nazrul Islam . ◽  
M. Ashrafuzzaman .

2019 ◽  
Vol 33 (1) ◽  
pp. 440-455 ◽  
Author(s):  
Samuel Chibuike Chukwu ◽  
Mohd Y. Rafii ◽  
Shairul Izan Ramlee ◽  
Siti Izera Ismail ◽  
Yussuf Oladosu ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 43
Author(s):  
Nafisah Nafisah ◽  
Celvia Roza ◽  
Nani Yunani ◽  
Aris Hairmansis ◽  
Tita Rostiati ◽  
...  

<p class="abstrakinggris">Hundred of high yielding and bacterial leaf blight (<em>Xanthomonas oryzae</em> pv. <em>oryzae, Xoo</em>) resistant rice varieties released since the 1960s are important sources of genetic materials for exploring superior genotypes. The study aimed to evaluate the genetic resistance of 177 rice varieties to <em>Xoo</em> and their agronomic traits. The evaluations were conducted at the Indonesian Center for Rice Research Experimental Station during the wet season (December 2015-March 2016). The bacterial leaf blight resistance was evaluated for <em>Xoo</em> pathotypes III, IV, and VIII using the clipping method. The genetic variation among genotypes was categorized as low (0–10%), medium (10–20%), and high (&gt;20%), whereas the heritability was categorized as low (0-30%), medium (30-60%), and high (&gt;60%). The variability of resistance to <em>Xoo</em> pathotypes, grain yield, and spikelet fertility was low, while the variability of plant height, productive tiller number, filled grain, and total spikelet was medium, and the variability of unfilled grain number was high. The 29 varieties  were categorized as superior based on their agronomic traits or resistance to <em>Xoo</em> pathotypes. In conclusion, Batutegi and Fatmawati were superior in the total spikelet number, while Rojolele and Inpari 2 were supreme in the thousand-grain weight. Dodokan had a very short maturity, and Inpari 24, Conde, Kalimas, Angke, Inpari 17, and Inpara 8 had the highest resistance to <em>Xoo</em> pathotypes. The study implies that the identified rice superior genotypes could be used as genetic materials to design cross combinations for higher yield potential and BLB resistance varietal improvement.</p>


Plant Disease ◽  
2021 ◽  
Author(s):  
Lin Yu ◽  
Changdeng Yang ◽  
Zhijuan Ji ◽  
Yuxiang Zeng ◽  
Yan Liang ◽  
...  

In autumn 2020, leaf blight was observed on rice (Oryza sativa L., variety Zhongzao39, Yongyou9, Yongyou12, Yongyou15, Yongyou18, Yongyou1540, Zhongzheyou8, Jiafengyou2, Xiangliangyou900 and Jiyou351) in the fields of 17 towns in Zhejiang and Jiangxi Provinces, China. The disease incidence was 45%-60%. Initially, water-soaked, linear, light brown lesions emerged in the upper blades of the leaves, and then spread down to leaf margins, which ultimately caused leaf curling and blight during the booting-harvest stage (Fig. S1). The disease symptoms were assumed to be caused by Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial blight. 63 isolates were obtained from the collected diseased leaves as previously described (Hou et al. 2020). All isolates showed circular, smooth-margined, yellow colonies when cultured on peptone sugar agar (PSA) medium for 24h at 28℃. The cells were all gram-negative and rod-shaped with three to six peritrichous flagella; positive for catalase, indole, glucose fermentation and citrate utilization, while negative for oxidase, alkaline, phenylalanine deaminase, urease, and nitrate reductase reactions. 16S rRNA gene sequence analysis from the 6 isolates (FY43, JH31, JH99, TZ20, TZ39 and TZ68) revealed that the amplified fragments shared 98% similarity with Pantoea ananatis type strain LMG 2665T (GenBank JFZU01) (Table S3). To further verify P. ananatis identity of these isolates, fragments of three housekeeping genes including gyrB, leuS and rpoB from the 6 isolates were amplified and sequenced, which showed highest homology to LMG 2665T with a sequence similarity of 95%-100% (Table S3). Primers (Brady et al. 2008) and GenBank accession numbers of gene sequences from the 6 isolates are listed in Table S1 and Table S2. Phylogenetic analysis of gyrB, leuS and rpoB concatenated sequences indicated that the 6 isolates were clustered in a stable branch with P. ananatis (Fig. S2). Based on the above morphological, physiological, biochemical and molecular data, the isolates are identified as P. ananatis. For pathogenicity tests, bacterial suspension at 108 CFU/mL was inoculated into flag leaves of rice (cv. Zhongzao39) at the late booting stage using clipping method. Water was used as a negative control. The clipped leaves displayed water-soaked lesions at 3 to 5 days after inoculation (DAI); then the lesion spread downward and turned light brown. At about 14 DAI, blight was shown with similar symptoms to those samples collected from the rice field of Zhejiang and Jiangxi provinces (Fig. S1). In contrast, the control plants remained healthy and symptomless. The same P. ananatis was re-isolated in the inoculated rice plants, fulfilling Koch’s postulates. In the past decade, P. ananatis has been reported to cause grain discoloration in Hangzhou, China (Yan et al. 2010) and induce leaf blight as a companion of Enterobacter asburiae in Sichuan province, China (Xue et al. 2020). Nevertheless, to the best of our knowledge, this is the first report of P. ananatis as the causative agent of rice leaf blight in southeast China. This study raises the alarm that the emerging rice bacterial leaf blight in southeast China might be caused by a new pathogen P. ananatis, instead of Xoo as traditionally assumed. Further, the differences of occurrence, spread and control between two rice bacterial leaf blight diseases caused by P. ananatis and Xoo, respectively need to be determined in the future.


Sign in / Sign up

Export Citation Format

Share Document