scholarly journals Calibration and Validation of HEC-HMS Model for Chalakudy River Basin

Author(s):  
Gudidha Gopi ◽  
K. P. Rema

Prediction of flood prone areas in a basin and evolution of the impact of climate change on water resources needs a correct estimation of the availability of water which will solely be achieved by hydrological modelling of the basin. However, modelling the hydrology of a basin is a complex task and models should be well calibrated to increase user confidence in its predictive ability which in turn makes the application of the model effective. In this study rainfall-runoff simulation model viz., Hydrologic Modelling System, developed by the Hydrologic Engineering Centre USA (HEC-HMS) has been calibrated and validated for Chalakduy river basin in Kerala, in Sothern India for prediction of its hydrologic response. The result shows Curve Number (CN), Lag time and initial abstraction (Ia) to be the sensitive parameters for the simulated stream flow. The statistical analysis of Nash-Sutcliffe model efficiency criteria, the percentage error in peak, percentage error in volume, and net difference of observed and simulated time to peak, which were used for performance evaluation, have been found to range from (0.70 to 0.87), (4.39 to 19.47%), (1.9 to 19%) and (0 to 1day) respectively, indicating a very good performance of the model for simulation of stream flow.

2014 ◽  
Vol 14 (11) ◽  
pp. 2899-2920 ◽  
Author(s):  
O. Laganier ◽  
P. A. Ayral ◽  
D. Salze ◽  
S. Sauvagnargues

Abstract. Mediterranean catchments are regularly affected by fast and flash floods. Numerous hydrologic models have been developed, and allow modelling of these floods. However, these approaches often concern average-size basins of a few hundred km2. At larger scales (>1000 km2), coupling of hydrologic and hydraulic models appears to be an adapted solution. This study has as its first objective the evaluation of the performances of a coupling of models for flood hydrograph modelling. Secondly, the coupling results are compared with those of other modelling options. The aim of these comparisons is to clear up the following points. (1) Is a simplified routing model (lag and route) as efficient as a full hydraulic model for the modelling of hydrographs, in the intermediary downstream part of the stream? (2) Is adding lateral inflows necessary for all studied events? (3) What is the impact of the qualities of upstream hydrologic modelling feeding the coupling? The coupling combines the SCS–LR (Soil Conservation Service–lag-and-route) hydrologic model of the ATHYS platform and the MASCARET 1-D hydraulic model based on full Saint-Venant equations. It is applied to the Gardon River basin (2040 km2) in the south of France. For the seven studied events, the results of the coupling are satisfactory, the calculated Nash indexes varying between 0.61 and 0.97. The comparisons with the other modelling options show the important role of the spatial distribution of rains during events: when rains are centered on the intermediary downstream part of the catchment, adding lateral inflows is necessary; when rains are more important in the upstream part, the quality of the hydrologic modelling upstream of the coupling has a strong impact. Furthermore, the used coupling of models seems well adapted for water rising and flooded area forecasting. The future developments of the tool will concentrate on this point.


2020 ◽  
Vol 15 (3) ◽  
pp. 172-183
Author(s):  
Gabriel Földes ◽  
Silvia Kohnová ◽  
Marija Mihaela Labat ◽  
Kamila Hlavčová

The paper focuses on the impact of climate change on runoff in the Ipoltica River basin in northern Slovakia. The analysis is divided into two parts: the first part contains an analysis of predicted changes in short-term rainfall intensities at the Liptovská Teplička climatological station; the second part is focused on the impact of runoff on a small mountainous river basin. The predicted short-term rainfall intensities were analyzed using the Community Land Model, which is a Regional Climate Model. The analysis was performed in durations of 60 to 1440 minutes for a warm period. The focus was aimed at comparing changes in rainfall characteristics, especially changes in seasonality, the scaling exponents, and design values. The second part focuses on the impact of changes in short-term rainfall on changes in runoff. The estimation of predicted runoff changes was provided for the period 2070 - 2100. These results were compared with the results from actual observations. The design floods were calculated using the Soil Conservation Service - Curve Number method. The results show that the runoff will be affected by climate change. Hence, it is important to reevaluate the land use management and practices at the Ipoltica River basin.


2014 ◽  
Vol 11 (1) ◽  
pp. 1169-1201 ◽  
Author(s):  
D. Kneis ◽  
C. Chatterjee ◽  
R. Singh

Abstract. The paper examines the quality of satellite-based precipitation estimates for the Lower Mahanadi River Basin (Eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gage-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gage data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analyzing their performance in the context of rainfall-runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gage-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high intensity levels. The rainfall depth derived from rain gage data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day−1). At the same time, the remotely sensed rainfall rates frequently exceed the gage-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalization of rain gage data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gage data were used as model input (Nash–Sutcliffe Index of 0.76–0.88 at gages not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gage-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.


2009 ◽  
Vol 57 (3) ◽  
pp. 154-161 ◽  
Author(s):  
Michal Jeníček

Runoff changes in areas differing in land-use in the blanice river basin - application of the deterministic modelThe aim of this article is to present partial results of more extensive research which is focused on using different methods for runoff computation in areas differing in land use. With the help of the deterministic lumped model HEC-HMS (Hydrologic Engineering Center - Hydrologic Modelling System) several simulations of r noff changes by different basin conditions were carried out. The Blanice River basin in the Šumava Mts. was chosen as an experimental catchment in its closure profile in Podedvory (gauge station, area 209.6 km2). For assessment of land cover changes impact on hydrological regime four scenarios were carried out - 10, 20, 50 and 100-year 1-day probability precipitation in combination with different initial conditions (soil saturation). These scenarios were applied to the stage of the land cover in the year 1992 and 2000 (based on the CORINE Landcover database). The method SCS CN (Soil Conservation Service Curve Number) was applied as the main model technique.


Author(s):  
K. Venkatesh ◽  
H. Ramesh

<p><strong>Abstract.</strong> Streamflow can be affected by a number of aspects related to land use and can vary promptly as those factors change. Urbanization, deforestation, mining, agricultural practices and economic growth are some of the factors related to these land use changes which alter the stream flow. In the present study, the impact of land use land cover change (LULC) on stream flow is studied by using SWAT model for Tungabhadra river basin, located in the state of Karnataka, India. Tungabhadra river originates in the Western Ghats of Karnataka and flows towards north-east and joins the river Krishna. The land use maps of 1993, 2003 and 2018 are used for assessing the stream flow changes with respect to LULC. Calibration and validation of the model for streamflow was carried out using the SUFI-2 algorithm in SWAT-CUP for the years 1983&amp;ndash;1993 and 1994&amp;ndash;2000 respectively. Statistical parameters namely Coefficient of Determination (R<sup>2</sup>) &amp;amp; Nash–Sutcliffe (N-S) were used to assess the efficiency and performance of the SWAT model. It was found that the observed and simulated streamflow values are closely matching, which in turn projects that the model results are acceptable. The calibrated model was used for simulation of future dynamic land use scenario to assess the impact on streamflow. The results can be used for conservation of water and soil management.</p>


2020 ◽  
Author(s):  
Hana Beitlerová ◽  
Jonas Lenz ◽  
Jan Devátý ◽  
Martin Mistr ◽  
Jiří Kapička ◽  
...  

Abstract. Soil infiltration is one of the key factors that has an influence on soil erosion caused by rainfall. Therefore, a well-represented infiltration process is a necessary precondition for successful soil erosion modelling. Complex natural conditions do not allow the full mathematical description of the infiltration process and additional calibration parameters are required. The Green-Ampt based infiltration module in the EROSION-2D/3D model is adjusted by calibration of the skinfactor parameter. Previous studies provide skinfactor values for several combinations of soil and vegetation conditions. However, their accuracies are questionable and estimating the skinfactors for other than the measured conditions yields significant uncertainties in the model results. This study presents new empirically based transfer functions for skinfactor estimation that significantly improve the accuracy of the infiltration module and thus the overall EROSION-2D/3D model performance. The transfer functions are based on a statistical analysis of the rainfall-runoff simulation database, which contains 273 experiments compiled by two independent working groups. Linear mixed effects models, with a manual backward elimination approach for the predictor selection, were applied to derive the transfer functions. Soil moisture and bulk density were identified as the most significant predictors explaining 79 % of the skinfactor variability, followed by the soil texture and the impact of previous rainfall events. The mean absolute percentage error of the skinfactor prediction was improved from 192 % using the currently available method, to 66 % using the presented transfer functions. Error propagation of the predicted skinfactors into the surface runoff and soil loss on the hypothetical slope showed significant improvement in the EROSION-2D/3D results. A first validation of real rainfall-runoff events indicates good model performance for events with a higher total precipitation and intensity.


Author(s):  
Nicholas DeVogel ◽  
Anjishnu Banerjee ◽  
Frank A. Pintar ◽  
Narayan Yoganandan

Determination of human tolerance to impact-induced damage or injury is needed to assess and improve safety in military, automotive, and sport environments. Impact biomechanics experiments using post mortem human surrogates (PMHS) are routinely used to this objective. Risk curves representing the damage of the tested components of the PMHS are developed using the metrics gathered from the experimental process. To determine the metric that best explains the underlying response to the observed damage, statistical analysis is required of all the output response metrics (such as peak force to injury) along with the examination of potential covariates. This is conducted by parametric survival analysis. The objective of this study is to present a robust statistical methodology that can be effectively used to achieve these goals by choosing the best metric explaining injury and provide a ranking of the metrics. Previously published data from foot-ankle-lower leg experiments were used with two possible forms of censoring: right and left censoring or right and exact censoring, representing the no injury and injury data points in a different manner. The statistical process and scoring scheme were based on the predictive ability assessed by the Brier Score Metric (BSM) which was used to rank the metrics. Response metrics were force, time to peak, and rate. The analysis showed that BSM is effective in incorporating different covariates: age, posture, stature, device used to deliver the impact load, and the personal protective equipment (PPE), i.e., military boot. The BSM-based analysis indicated that the peak force was the highest ranked metric for the exact censoring scheme and the age was a significant covariate, and that peak force was also the highest ranked metric for the left censored scheme and the PPE covariate was statistically significant. IRCs are presented for the best metric.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (&gt; 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


Sign in / Sign up

Export Citation Format

Share Document