scholarly journals Assessment of Genetic Parameter of Variability and Heritability based on Morphological Traits and Disease Parameters for Brown Spot in Rice (Oryza sativa L.)

Author(s):  
. Banshidhar ◽  
Priyanka Jaiswal ◽  
Rajesh Kumar ◽  
Bimla Rai

Cochliobolus miyabeanus is a serious threat to the standing rice crop in context of production and productivity as it results in loss of both grain quality and yield. The pathogen causes brown spot disease in rice which had resulted in two severe famines in past. Hence, in this regard it is imperative to search for new and diverse resistance sources and to evaluate them with respect to genetic variability and inherent genetic potential for various morphological traits including yield and yielding attributing traits and disease estimating parameters for identifying high yielding diverse resistant lines that could be utilized in future breeding programmes aimed at development of superior cultivars against brown spot disease. Keeping this in view this study was conducted at Rice Research Farm, RPCAU, Pusa to evaluate 300 genotypes for rice for various morphological traits and disease estimating parameters along with three checks for disease response in augmented design. All the recommended package of practices was followed along with necessary prophylactic plant protection measures to raise a good crop. Data on different traits and parameters under study were recorded and analysed biometrically to assess the genetic parameter of variability and heritability. The ANOVA showed significant difference among the genotypes for most of the traits and parameters under study which reflects ample amount of variability among the genotypes. Further, the smaller difference between GCV and PCV and higher estimates of heritability and genetic advance as percentage of mean revealed higher percentage of inherent genetic potential in overall variability. The higher estimates of heritability and genetic advance as percent of mean for grain yield per plant and AUDPC suggested that the resistant lines identified in this study can be easily advanced through generation following phenotypic selection for derivation of high yielding resistant lines.

2021 ◽  
Vol 2 (2) ◽  
pp. 028-036
Author(s):  
William Norbert Kuate Tueguem ◽  
Jules Patrice Ngoh Dooh ◽  
Thierry Atindo Songwe ◽  
Alain Heu ◽  
Charles Essome Sale ◽  
...  

In Africa, rice is produced and is a source of food energy in most developing countries. But its cultivation faces to brown spot disease, caused by Bipolaris oryzae (Breda de Haan) Shoemaker, which is a serious seed-borne and seed transmitted disease of rice worldwide.The aim of this study was to screen rice varieties for resistance to brown spot disease in field conditions inYaoundé. A completely randomized Fisher block design with three repetitions was used during 2 growing seasons (2015 and 2016). Growth, yields and disease (incidence and severity) parameters were evaluated on four rice varieties (Nerica 3 and 8, White rice and Kamkou). Results show that height of the Nerica 8 variety (86.03cm) and the number of tillers of Kamkou variety (21.66) were significantly highest compared to others varieties (P<0.05) at 59 Days After Sowing (DAS). There was no significant difference on disease incidence for the different rice varieties at the end of rice plant cycle. However disease severity was lower on Nerica 3(2.71%) and Nerica8 (2.05%) varieties and higher on White variety (4.57%). Hence, Nerica 3 and 8 varieties were more tolerant to brown spot disease than others varieties. Overall, Nerica 3 (3.68 t ha-1) and Kamkou (3.51 t ha-1) varieties resulted in higher yields than white rice 28.93 t ha-1.


2021 ◽  
Vol 3 ◽  
Author(s):  
Benish Ashfaq ◽  
Hafiz M. Imran Arshad ◽  
M. Atiq ◽  
Sumaira Yousaf ◽  
Kamran Saleem ◽  
...  

Brown leaf spot disease of rice is a dominant lethal disease, caused by the fungus Bipolaris oryzae. The pathogen is an obligate parasite and causes qualitative and quantitative damage to rice crop. The objective of the present study was to investigate what extent the defense related biochemical compounds reflect the distinct categories of resistance phenotypes in rice against brown spot disease. This was done by determining the concentration of Catalase (CAT), Phenylalanine ammonia-lyase (PAL), Polyphenol oxidase (PPO), Peroxidase (POD), and β-1,3-Glucanase enzymes in resistant, moderately resistant and susceptible rice genotypes. The disease resistant phenotypes in rice line (PARC-7) reflect the higher accumulation of CAT, PAL, PPO, POD, and β-1,3-Glucanase. The pattern of enzyme accumulation was similar in all resistant genotypes. The rice genotypes with moderately resistant phenotypes showed significant difference with respect to the concentration of biochemical defense-related compounds. The difference in accumulation of defense related enzymes reflected the level of disease severity (% leaf area covered) on resistant and moderately resistant genotypes. The susceptible rice genotypes showed the minimum concentration of these enzymes, with the lowest concentrations found in the rice variety Bas-2000 (80% Disease Index). The differential defense response in resistant and susceptible genotypes suggests that these enzymes can be used as biochemical markers for early detection of disease resistant genotypes. The study of enzyme accumulation at different time points and at different levels of disease severity helps to understand the resistance mechanisms against brown spot disease in rice.


1986 ◽  
Vol 50 (6) ◽  
pp. 1597-1606 ◽  
Author(s):  
Yoshiki KONO ◽  
J. M. GARDNER ◽  
Yoshikatsu SUZUKI ◽  
Setsuo TAKEUCHI

2021 ◽  
pp. 335-342
Author(s):  
P. Reis ◽  
C. Rego ◽  
M. Mota ◽  
T. Comporta ◽  
C.M. Oliveira

2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Yosep S. Mau ◽  
Antonius Ndiwa ◽  
Shirly Oematan

Abstract. Mau YS, Ndiwa ASS, Oematan SS. 2020. Brown spot disease severity, yield and yield loss relationships in pigmented upland rice cultivars from East Nusa Tenggara, Indonesia. Biodiversitas 21: 1625-1634. Brown spot is one of the most devastating diseases of rice, which could lead to total yield loss. The disease has a worldwide distribution, more specifically in areas where water supply is scarce, most specifically in the dry upland areas. Almost all stages of rice are affected by the disease, where leaves and grains are mostly affected. Considerable differences exist in susceptibility to brown spot among rice varieties, which may cause a large variation in yield loss caused by the disease. Therefore, the resistance level of rice varieties and their yield reduction has to be regularly evaluated and updated. There are only a few reports on the relationship between brown spot severity with yield and yield loss of upland rice, and is even lacking in pigmented upland rice. The objectives of the present study were to assess the brown spot severity and resistance level in pigmented upland rice cultivars from East Nusa Tenggara Province, Indonesia, and to elucidate their relationships with yield and yield reduction. Twenty four pigmented upland rice genotypes were evaluated in the field during May to October 2019, and their disease responses and yields were recorded. Disease severity was observed weekly and used to calculate Area Under the Disease Progress Curve (AUDPC) for comparison among the genotypes. The relationships between disease severity and AUDPC with yield and yield loss were also examined. The results showed significant variation in brown spot severity and AUDPC, ranging from, respectively, 11.11% to 40.70% and 398.42%-days to 1081.30%-days. Yields and yield losses of test genotypes also varied substantially. Yields under diseased-free and diseased plots ranged from, respectively, 2.34 t ha-1 to 6.13 t ha-1 and 1.68 t ha-1 to 3.74 t ha-1 while yield loss was between 10.46% and 56.15%. Six genotypes were moderately resistant, four genotypes were moderately susceptible and 14 genotypes were susceptible to brown spot. Neither disease severity nor AUDPC had a linear relationship with yield but both exhibited positive and linear relationships with yield loss.


Sign in / Sign up

Export Citation Format

Share Document