scholarly journals Balanced Fertilization for Improved Nutrient use Efficiency and Mulberry Productivity

Author(s):  
Mahesh Rajendran ◽  
Melissa Lalremruati ◽  
Soumen Chattopadhay ◽  
Sivaprasad Vankadara

Aim: To study the effects of balanced fertilization in improving leaf yield, quality and nutrient use efficiency in mulberry. Study Design: Experiment was conducted in randomized block design (RBD) consisting of 7 treatments in 3 replications. Place and Duration of Study: The present study was conducted at Central Sericultural Research and Training Institute, Berhampore ((Latitude 24º05ʹN & Longitude 88º15ʹE; 18 m > MSL), West Bengal, India in two seasons during 2018 (July-August; September-October). Methodology: Existing S-1635 mulberry plantation (10year-old; 60 cm × 60 cm spacing; net plot area: 32 m2) was utilized. Experiments were conducted in two seasons (July-August, 2018; September-October, 2018) in randomized block design (RBD) consisting of 7 treatments in 3 replications. The treatments in this study included, T1: 100% N-P2O5-K2O+S+Zn with Urea-SSP-10:26:26 + Bentonite Sulphur (8 kg ha-1) + Zinc Sulphate (1 kg ha-1) as BF; T2: 75% BF; T3: 100% N-P2O5-K2O alone (Urea-SSP-10:26:26); T4: 75% N-P2O5-K2O alone (Urea-SSP-10:26:26); T5: 100% N-P2O5-K2O alone (Urea-DAP-MOP); T6: 100% N-P2O5-K2O alone (Urea-SSP-MOP) as farmers′ practice (FP); T7: Nutrients omission plot (Control). The recommended fertilizer dose (100%) for irrigated mulberry production in the Eastern region is N-P2O5-K2O=67-36-22 kg ha-1 crop-1. All the fertilizers were applied in two equal splits on 15th and 30th day after pruning. Results: This study reveals the importance of balanced fertilization of mulberry with N, P, K, S and Zn for sustainable productivity, which is reflected by the maximum values for leaf yield attributes, chlorophyll content and leaf yield. Further, mulberry leaf quality (in terms of total soluble protein and total soluble sugar) significantly improved with balanced fertilization. Higher PFP and AUE were also recorded with fertilization with compound/complex fertilizers than with straight fertilizers; but the balanced fertilization exhibited remarkable enhancement. Conclusion: The results prove that balanced fertilization of N-P2O5-K2O @ 67-36-22 kg ha-1 (Urea-SSP-10:26:26) with Bentonite sulphur (8 kg ha-1) and zinc sulphate (1 kg ha-1) were effective in improving mulberry productivity through enhanced nutrient use efficiency. This could be useful for realizing maximum productivity in mulberry as an efficient nutrient management strategy in mulberry cultivation.

2020 ◽  
Vol 33 (1) ◽  
pp. 81-89
Author(s):  
CLEITON DALASTRA ◽  
MARCELO CARVALHO MINHOTO TEIXEIRA FILHO ◽  
PABLO FORLAN VARGAS

ABSTRACT A balanced periodicity of the nutrient solution flow is essential for better agronomic performances and low production costs in hydroponic systems. Thus, the objective of this work was to evaluate the effect of periodicity of exposure of lettuce plants to the nutrient solution in an NFT hydroponic system on the production, nutrition, and profitability of this crop. The experiment was conducted in a randomized block design with five replications. The treatments consisted of four periodicities of exposure of lettuce plants to the nutrient solution, consisting of intervals of 60, 30, and 15 minutes between pumping periods of 15 minutes; and uninterrupted flow of the nutrient solution. The plants were harvested at 30 days after transplanting, and 15 lettuce plants of each experimental plot were used to determine total fresh weight; root fresh weight; shoot freshweight; and contents of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn in shoots, roots, and in the diagnostic leaf; accumulation of these nutrients in shoots and roots; and nitrate and ammonium contents in plant shoot. The highest production and profitability of lettuce were found using uninterrupted nutrient solution flow, which provided higher shoot and root nutrient contents to plants, and resulted in a better nutrient use efficiency.


Author(s):  
R.K. Singh ◽  
S.R.K. Singh ◽  
Narendra Kumar ◽  
A.K. Singh

Background: The negative effects of continuous use of chemical fertilizers on soil microbiology and agricultural sustainability are well established. The chemical fertilizers load in environment can be minimized by combined application of fertilizers and biofertilizers in crops like pulses which require less fertilizer-N and respond well to the use of biofertilizers. The objectives of the study were to see the effect of different biofertilizers in reduction of total fertilizer use and the response of field pea to combined application of chemical- and bio-fertilizers in terms of growth, yield and NUE.Methods: A field experiment was conducted during 2 consecutive rabi season of 2017-18 and 2018-19 at KVK, Chhatarpur, Jabalpur (Madhya Pradesh), India to evaluate the application of fertilizers and biofertilizers on growth parameter, nodulation, nutrient content and uptake, nutrient use efficiency, yield and economics of field pea. The experiment was laid out in randomized block design with five treatments in four replications. Treatments comprised of Control, Recommended dose (RD) of NPK (20: 60: 20 kg N, P2O5 and K2O/ha, respectively) (RDNPK), RDNPK + seed inoculation with Rhizobium @ 20 g/kg seed (RDNPK +R), RDNPK+R+phosphate solubilizing bacteria @ 20 g each/kg seed (RDNPK + R+PSB) and 75% of RDNPK + R+ PSB + potash solubilizing bacteria @ 5 kg/ha (75% RDNPK+ R+PSB+KSB). All other practices followed as per recommendation for the region and different observations and indices were recorded by following standard procedures.Conclusion: The application of 75% RDNPK+R+PSB+KSB was found best treatment among all others which resulted in highest grain yield (1682 kg/ha), protein content (23.1%), protein yield (388.5 kg/ha), net return (Rs. 46 623/ha) and B:C ratio (2.94). The nutrient use efficiency such as Partial Factor Productivity (PFP), Agronomic efficiency (AE), Physiological Efficiency (PE) and Economic Efficiency (EE) were also higher under combined application of fertilizers and biofertilizers. Thus, 75% RDNPK along with combined application of biofertilizers (R+PSB+KSB) may be applied for higher yield and return from field pea.


Author(s):  
Ahmet Kınay ◽  
Halil Erdem

This research was carried out to determine the effects of fertilizers with MgSO4 applied in the increasing amounts (0, 3, 6 and 9 kg da-1) on the leaf yield, leaf quality and some chemical (Mg, S, N, P, K, nicotine, sugar, chlorogenic and rutin concentration) parameters of tobacco in the field conditions of Tokat/Erbaa and Tokat/Kazova locations in 2017 year. The research was established in three replications according to the randomized block design, and the leaves that reached the harvest maturity were harvested in three hands. According to the results, with increasing doses of MgSO4 application, there was an increase in the leaf yield of the tobacco cultivar grown in Erbaa and Kazova locations. The increase in leaf yield was seen at the dose of 6 kg da-1 of MgSO4 and this increase was 22% in Erbaa location and 6.4% in Kazova location. It was observed that increasing MgSO4 applications caused statistically significant increases in leaf Mg and S concentrations, and the highest increase was observed in the leaf yield at a dose of 6 kg da-1. Nicotine concentration, which is a very important alkaloid component for tobacco, caused a decrease in both locations with MgSO4 application. The results revealed that increasing doses of MgSO4 caused an increase in the yield of tobacco leaves, an increase in leaf Mg and S concentrations, and a decrease in nicotine concentrations.


2016 ◽  
Vol 2 (2) ◽  
pp. 88 ◽  
Author(s):  
Archana P. Kale ◽  
Satyavikas N. Gawade

A field experiment was conducted at M/s.Rashtriya Chemicals and Fertilizers, Ltd., Mumbai, India, (RCF) experimental farm to evaluate the effect of ZnO Nanoparticles (ZnO NP) in combination with N: P: K (15: 15:15) complex fertilizer “Suphala” of RCF Ltd. on growth attributes of brinjal (Solanum melongena L) as well as nutrient use efficiency. The experiment was carried out in randomised block design with three replications. The first treatment (T-1), comprised of recommended dose of fertilizer (RDF), N: P: K (50:50:50), applied at the time of transplantation. The second treatment (T-2) was conducted with RDF in combination @ 2kg ZnSO4 (bulk)/ha. The third treatment (T-3) was added, N: P: K (12.5; 12.5; 12.5) in combination to ZnO NP @ 4500mg/ha. The forth treatment (T-C) was without any fertilizer. All treatments were given appropriate quantity of nitrogen per hectare as urea at the 30th day of transplantation. The combination N: P: K (12.5; 12.5; 12.5) and ZnO NP @ 4500mg/ha yielded 91% and 45.3% higher brinjal yield and biomass respectively than the treatment with only RDF. It was also observed that 38% and 21% higher yield and biomass respectively were recorded in the treatment where combination of RDF with ZnSO4 (bulk) over RDF was used alone. The results of field trials reveal that, there was synergistic effect of ZnO NP @ 4500mg per hectare with N: P: K complex fertilizer on growth attributes of brinjal as well as nutrient use efficiency.


2015 ◽  
Vol 39 (6) ◽  
pp. 1671-1680 ◽  
Author(s):  
Leonardo Duarte Pimentel ◽  
Claudio Horst Bruckner ◽  
Hermínia Emília Prieto Martinez ◽  
Sérgio Yoshimitsu Motoike ◽  
Candida Elisa Manfio ◽  
...  

ABSTRACT The economic exploitation of macaw palm [Acrocomia aculeate(Jacq.) Lodd. ex Mart.] is currently in transition, from extractivism to agricultural cultivation, thus requiring studies on the fertilization of the crop. This study evaluated the response of three genotypes of macaw palm to increasing rates of nitrogen and potassium, grown in the field until the 2nd year and to establish reference contents of mineral nutrients in the leaf. The experiment was a split-plot randomized block design with five main treatments (N and K rates) and three secondary treatments (genotypes), with three replications, each plot containing three plants. Plant height, leaf number, vigor, and nutrient contents in leaf tissues were evaluated at the end of 2nd year of cultivation. Differential responses were observed among genotypes, indicating that some genotypes are more efficient in the use of mineral inputs. There was a differentiated and positive response to increasing side-dressed N and K rates in the vegetative development of macaw genotypes until the 2nd year of field cultivation, indicating variability in the species in terms of nutrient use efficiency. The N and K fertilization rate corresponding to 360 g N + 480 g K2O per plant, in four split applications over the two years of cultivation, was insufficient to induce maximum vegetative development in the three macaw genotypes. There was no variation in macro- and micronutrient contents in leaf dry matter of the three macaw genotypes.


Author(s):  
Sabaï Katé ◽  
Pierre G. Tovihoudji ◽  
Michel Batamoussi-Hermann ◽  
Elvire L. Sossa ◽  
Rodrigue Idohou ◽  
...  

Aims: Investigated the influence of organic manures (municipal solid waste compost [MSWC] and cow dung) and N-fertilizer on growth, yield and nutrient use efficiency of jute mallow (Corchorus olitorius L.) under two water regimes (rain-fed and irrigated). Study Design: Randomized complete block. Place and Duration of Study: Farm of Faculty of Agricultural Sciences, University of Parakou, Northern Benin (latitude 09°20’16.8’’N and longitude 002°38’54’’ E, 353 m asl), during 2013 rainy (June to August) and dry seasons (October to December 2013). Methodology: Ten treatments derived from a factorial combination of five levels of organic manures (control, MSWC at 10 t/ha, MSWC at 20 t/ha, cow dung at 10 t/ha and cow dung at 20 t/ha) and two levels of N-fertilizer (0 kg and 50 kg urea/ha), arranged in a randomized complete block with three replicates were considered. Results: Results showed that water regime significantly (p<.001) affected growth and yield of jute mallow. In addition, the growth and yield parameters showed significant differences (p<.001) in relation to different rates of organic manures.  The integrated use of organic manure and urea increased plant height, number of leaves, stem diameter, number of branches, leaf growth parameters and leaf yield. The maximum amount of leaf yield (7554.88 kg/ha) was obtained with 20 tons/ha of MSWC and 50 kg urea/ha. Conclusion: Fertilizer types also had highly significant effects on nutrient use efficiency. Application of these treatments could help to enhance yield and growth of the jute mallow.


Author(s):  
N. Bhavya ◽  
P. K. Basavaraja ◽  
H. Mohamed Saqeebulla ◽  
G. V. Gangamrutha

A field experiment was conducted during Kharif 2017 at Devanahalli village, Bengaluru rural district of Karnataka to evaluate the effect of different approaches of nutrient application on yield,  nutrient uptake and use efficiency by carrot (Daucus carota L.). The experiment was laid out in randomized complete block design replicated thrice with eight treatments comprisingT1 (STCR target 20 tha-1  through inorganics), T2 (STCR target 20 tha-1  through integrated), T3 (STCR target 25 tha-1  through inorganics), T4 (STCR target 25 tha-1  through integrated), T5 (RDF (75: 63: 50) N, P2O5, K2O kg ha-1+ FYM), T6 (LMH /STL + FYM), T7 (Farmers practice (92.6:159:0) N, P2O5 kg ha-1 + FYM), T8 (Absolute control).Results revealed that significantly higher root (27.51 t ha-1)  and shoot (16.48 t ha-1) yield were recorded in STCR target of 25 t ha-1 through   integrated approach. Similarly, higher total uptake of nitrogen, phosphorus and potassium  (297.07 kg, 57.48 kg and 253.81 kg ha-1, respectively) by carrot and the higher apparent recovery   efficiency (0.35, 0.08 and 0.58 kg kg-1 of N, P2O5 and K2O, respectively) and agronomic nutrient use efficiency (26.10, 12.37 and 48.25 kg kg-1 of N, P2O5 and K2O, respectively) were recorded in the same STCR target of 25 t ha-1 through integrated approach. However, the better profit was recorded (value cost ratio: 43.30) in STCR target of 25 t ha-1 through inorganics. The STCR target of 25 t ha-1 through integrated approach had the most positive effect for the carrot cultivation.


Author(s):  
Dalal H. Sary ◽  
Rama T. Rashad

Aims: A study was carried out in the field aims to study the response of a calcareous soil cultivated by soybean to the application of K-silicate (K-Si), K-humate (K-H), and compost at application rates 50% and 100% of the recommended dose. Study Design: Complete randomized block design with three replicates. Place and Duration of Study: At El-Nubaryia Agricultural Research Station (latitude of 30° 30°N longitude of 30° 20°E) Agricultural Research Center (ARC), Nubaryia, Egypt (Summer seasons of 2018 and 2019). Methodology: Compost was mixed with surface soil a week before cultivation at application rates 3.75 and 7.5 kg plot-1 (3.91 and 7.81 t ha-1, respectively). Powder K-H was spread on soil at application rates 7.5 and 15 g plot-1 while aqueous solutions of K-Si; 8 and 16 mL L-1 for plot was sprayed on soil 30, 60, and 90 days after cultivation. Results: Results showed that soil moisture(SM, %) was increased by the 100% application rate in the order compost (20.6%) > K-Si (19.3%) > K-H (19.1%). A significant increase was found in the seed yield (kg ha-1) by 129.5%, 84.8% and 70.6% by compost, K-H and K-Si, respectively. Compost at 100% application rate showed the most significant increase in the available nitrogen N (mg kg-1) in soil by 104.4% followed by K-H (by 81.8%) then K-Si by 23.4%. Compost also showed the most significant increase in the N uptake from soil (kg ha-1 soil) by seeds and straw followed by K-H then K-Si. The nutrient use efficiency (NUE, %) and agronomic efficiency (AE) values decreased in the order K-H > K-Si > compost at 50% and 100% application rates. Conclusion: The quite smaller dose and ease of field application by spraying may make the K-H more agronomically efficient than K-Si and compost.


Sign in / Sign up

Export Citation Format

Share Document