scholarly journals Variability studies of Magnaporthe oryzae Using International Rice Blast Differentials Set under Agroclimatic Conditions of Kashmir Valley, India

Author(s):  
Farahnaz Rasool ◽  
Mushtaq Ahmed ◽  
Seemi Lohani ◽  
Shubana Bhat ◽  
Sushil Kumar ◽  
...  

The pathogenic variability of the sixty isolates of M. oryzae was confirmed by testing them for virulence and cultivar reaction against International rice blast differentials (IBD) viz., Raminad Str. 3, Zenith, Usen, NP-125, Kanto-51, Dular, Tsia-tiao-sio and Caloro lodging Piz, Pia, Pii, Pia, Pika, Pi-k and Piks resistance genes for rice blasteither singly or in combination or with an unknown background. The pathotype analysis of the isolates, collected from four surveyed districts of Kashmir valley revealed the presence of four races viz., IC-17, IC-25, ID-1 and II-1 according to the race classification and nomenclature proposed by Ling and Ou (1969). Of the 60 isolates of M. oryzae, 25 isolates pertained to race IC-17, 16 and 14 other isolates pertained to race ID-1 and II-1, respectively, whereas four other isolates pertained to race IC-25. The   predominant pathotype  was IC-17 with a virulence frequency of  60 %, followed by II-1 (46.67%) in district Pulwama, ID-1 (40%) and IC-25 (13.33%) in district Bandipora, respectively. IC-17 was seen to be the predominant race in each location in every district. Race ID-1 has been observed to overcome the maximum number of genes viz., Pia, Pika+, Piks and  Pik. but none of the isolates was able to overcome Raminad Str 3 and Zenith.

2020 ◽  
Vol 56 (No. 3) ◽  
pp. 93-101
Author(s):  
Bo Lan ◽  
Ying-Qing Yang ◽  
Qiang Sun ◽  
Hong-Fan Chen ◽  
Jian Chen ◽  
...  

To understand the cause of loss of rice blast resistance, we studied the pathogenicity of Magnaporthe oryzae strains isolated from rice hybrid Wuyou 308 and evaluated its resistance genes. A total of 62 M. oryzae strains were isolated and tested in 7 Chinese rice varieties with varying degrees of resistance to rice blast and 30 blast-resistant monogenic lines. Fourteen physiological races of M. oryzae were identified: 8.55% belonging to the ZA group, 86.67% to the ZB group, and 5.00% to the ZC group. ZB15 was the most abundant race (45.00%). Five resistance genes, Pi-3(1), Pi-z5, Pi-k, Pi-kp(C), and Pi-k(C), conferred good resistance to the 62 strains, with resistance frequencies of 95.56, 91.11, 88.89, 82.22, and 82.22%, respectively. In contrast, Pi-a(2) had a resistance frequency of 0%. The hybrid combination Wuyou 308 was found to carry Pi-ta and Pi-b genes. Because Pi-ta and Pi-b both showed low resistance frequencies to M. oryzae isolated from Jiangxi, the hybrid rice variety Wuyou 308 could be infected by most of the 62 M. oryzae strains. The emergence and spread of rice blast disease in Wuyou 308 may thus be difficult to avoid when climatic conditions are favourable.


Plant Disease ◽  
2021 ◽  
Author(s):  
Monica Navia-Urrutia ◽  
Gloria Mosquera ◽  
Rebekah Ellsworth ◽  
Mark Farman ◽  
Harold N. Trick ◽  
...  

Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Since few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene, and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54 and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem, and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.


2015 ◽  
Vol 35 (1) ◽  
Author(s):  
Yan Liu ◽  
Xinshuai Qi ◽  
Nelson D. Young ◽  
Kenneth M. Olsen ◽  
Ana L. Caicedo ◽  
...  

2021 ◽  
pp. 103562
Author(s):  
Alice Bisola Eseola ◽  
Lauren S. Ryder ◽  
Míriam Osés-Ruiz ◽  
Kim Findlay ◽  
Xia Yan ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 301
Author(s):  
Vishesh Kumar ◽  
Priyanka Jain ◽  
Sureshkumar Venkadesan ◽  
Suhas Gorakh Karkute ◽  
Jyotika Bhati ◽  
...  

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.


2014 ◽  
Vol 10 ◽  
pp. 251-258 ◽  
Author(s):  
Louis P Sandjo ◽  
Eckhard Thines ◽  
Till Opatz ◽  
Anja Schüffler

Four new polyketides have been identified in culture filtrates of the fungal strain Penicillium sp. IBWF104-06 isolated from a soil sample. They are structurally based on the same trans-decalinpentanoic acid skeleton as tanzawaic acids A–H. One of the new compounds was found to inhibit the conidial germination in the rice blast fungus Magnaporthe oryzae at concentrations of 25 μg/mL.


Rice ◽  
2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Chaivarakun Chaipanya ◽  
Mary Jeanie Telebanco-Yanoria ◽  
Berlaine Quime ◽  
Apinya Longya ◽  
Siripar Korinsak ◽  
...  

2002 ◽  
Vol 27 (1) ◽  
pp. 78-81 ◽  
Author(s):  
ALOISIO SARTORATO

Due to the increased importance of angular leaf spot of common bean (Phaseolus vulgaris) in Brazil, monitoring the pathogenic variability of its causal agent (Phaeoisariopsis griseola) is the best strategy for a breeding program aimed at developing resistant genotypes. Fifty one isolates of P. griseola collected in five Brazilian States were tested on a set of 12 international differential cultivars in the greenhouse. When inoculated plants showed symptoms but no sporulation was observed, they were transferred to a moist chamber for approximately 20-24 h. After this period of time, if no sporulation was observed, the plants were considered resistant; otherwise, they were considered susceptible. From the fifty-one tested isolates, seven different pathotypes were identified. No Andean pathotypes were identified; consequently, all isolates were classified as Middle American pathotypes. Pathotype 63-31 was the most widespread. Pathotype 63-63 overcame resistance genes present in all differential cultivars and also the resistance gene(s) present in the cultivar AND 277. This fact has important implications for breeding angular leaf spot resistance in beans, and suggests that searching for new resistance genes to angular leaf spot must be pursued.


2017 ◽  
Vol 148 (4) ◽  
pp. 955-965 ◽  
Author(s):  
Li Wang ◽  
Xiao-Hong Hu ◽  
Gang Lin ◽  
De-Ming Zhao ◽  
Jun Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document