scholarly journals Treating Dyslipidemia in Adults: An Update

Author(s):  
Sheikh Salahuddin Ahmed

Dyslipidemia is an important risk for the promotion of atherosclerosis and the development of cardiovascular disease (CVD). Currently available drugs can effectively lower the increased levels of blood cholesterol in most patients and prevent the development and progression of CVD. This paper focuses on the adverse cardiovascular effects produced by high blood cholesterols and the overall management of dyslipidemia in adults. Relevant guidelines and research papers published mainly after the year 2000 on the management of dyslipidemia were reviewed. High levels of low density lipoprotein cholesterol (LDL-C), or low levels of high density lipoprotein cholesterol (HDL-C), combined or independently are associated with increased risk of atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein B (ApoB), an atherogenic lipoprotein has emerged recently as the key factor in the pathogenesis of atherosclerosis. High triglyceride (TG) levels are associated with acute and recurrent pancreatitis. The purpose of treating lipid disorders is to prevent the development of ASCVD and pancreatitis. The treatment of dyslipidemia includes multifactorial life style intervention and pharmacotherapy with lipid modifying drugs. Reduction of LDL-C is substantially associated with reduction of risk of ASCVD and evidences show that “lower is better” for LDL-C reduction.

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Parth N Patel ◽  
Robert P Giugliano

Atherosclerotic cardiovascular disease (ASCVD) is highly prevalent and a major contributor to morbidity and mortality worldwide. Elevated blood cholesterol is a key driver of risk for atherosclerotic events, and patients with established ASCVD comprise a specific high-risk population in which low-density lipoprotein cholesterol (LDL-C) lowering therapy is strongly endorsed by multiple guidelines. An increasing number of medications across several pharmacologic classes are available today in clinical practice. Therefore, guidance on the appropriate use of these interventions is necessary for cost-effective solutions to managing residual atherothrombotic risk. In this review we summarize the key evidence supporting LDL-C lowering as described in the most recent 2018 multi-society Blood Cholesterol Guidelines, and provide a framework for optimizing LDL-C lowering therapy in secondary prevention populations.


Author(s):  
Ruihai Zhou ◽  
George A. Stouffer ◽  
Sidney C. Smith

Hypercholesterolemia is a well-established risk factor for atherosclerotic cardiovascular disease (ASCVD). Low-density lipoprotein cholesterol (LDL-C) has been labeled as “bad” cholesterol and high-density lipoprotein cholesterol (HDL-C) as “good” cholesterol. The prevailing hypothesis is that lowering blood cholesterol levels, especially LDL-C, reduces vascular deposition and retention of cholesterol or apolipoprotein B (apoB)-containing lipoproteins which are atherogenic. We review herein the clinical trial data on different pharmacological approaches to lowering blood cholesterol and propose that the mechanism of action of cholesterol lowering, as well as the amplitude of cholesterol reduction, are critically important in leading to improved clinical outcomes in ASCVD. The effects of bile acid sequestrants, fibrates, niacin, cholesteryl ester transfer protein (CETP) inhibitors, apolipoprotein A-I and HDL mimetics, apoB regulators, acyl coenzyme A: cholesterol acyltransferase (ACAT) inhibitors, cholesterol absorption inhibitors, statins, and proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors, among other strategies are reviewed. Clinical evidence supports that different classes of cholesterol lowering or lipoprotein regulating approaches yielded variable effects on ASCVD outcomes, especially in cardiovascular and all-cause mortality. Statins are the most widely used cholesterol lowering agents and have the best proven cardiovascular event and survival benefits. Manipulating cholesterol levels by specific targeting of apoproteins or lipoproteins has not yielded clinical benefit. Understanding why lowering LDL-C by different approaches varies in clinical outcomes of ASCVD, especially in survival benefit, may shed further light on our evolving understanding of how cholesterol and its carrier lipoproteins are involved in ASCVD and aid in developing effective pharmacological strategies to improve the clinical outcomes of ASCVD.


2020 ◽  
pp. 204748732094010
Author(s):  
Konstantinos C Koskinas ◽  
Baris Gencer ◽  
David Nanchen ◽  
Mattia Branca ◽  
David Carballo ◽  
...  

Aims The 2018 American College of Cardiology (ACC)/American Heart Association (AHA) and 2019 European Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) lipid guidelines recently updated their recommendations regarding proprotein convertase subtilisin/kexin-9 inhibitors (PCSK9i). We assessed the potential eligibility for PCSK9i according to the new guidelines in patients with acute coronary syndromes. Methods and results We analysed a contemporary, prospective Swiss cohort of patients hospitalised for acute coronary syndromes. We modelled a statin intensification effect and an incremental ezetimibe effect on low-density lipoprotein-cholesterol levels among patients who were not on high-intensity statins or ezetimibe. One year after the index acute coronary syndrome event, treatment eligibility for PCSK9i was defined as low-density lipoprotein-cholesterol of 1.4 mmol/l or greater according to ESC/EAS guidelines. For ACC/AHA guidelines, treatment eligibility was defined as low-density lipoprotein-cholesterol of 1.8 mmol/l or greater in the presence of very high-risk atherosclerotic cardiovascular disease, defined by multiple major atherosclerotic cardiovascular disease events and/or high-risk conditions. Of 2521 patients, 93.2% were treated with statins (53% high-intensity statins) and 7.3% with ezetimibe at 1 year, and 54.9% had very high-risk atherosclerotic cardiovascular disease. Low-density lipoprotein-cholesterol levels less than 1.8 mmol/l and less than 1.4 mmol/l at 1 year were observed in 37.5% and 15.7% of patients, respectively. After modelling the statin intensification and ezetimibe effects, these numbers increased to 76.1% and 49%, respectively. The proportion of patients eligible for PCSK9i was 51% according to ESC/EAS criteria versus 14% according to ACC/AHA criteria. Conclusions In this analysis, the 2019 ESC/EAS guidelines rendered half of all post-acute coronary syndrome patients potentially eligible for PCSK9i treatment, as compared to a three-fold lower eligibility rate based on the 2018 ACC/AHA guidelines.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Hiroaki Ikezaki ◽  
Elise Lim ◽  
Ching-Ti Liu ◽  
L Adrienne Cupples ◽  
Bela F Asztalos ◽  
...  

Introduction: Elevated plasma low-density lipoprotein cholesterol (LDL-C), small-dense LDL-C (sdLDL-C), LDL-triglyceride (LDL-TG), triglycerides (TG), remnant-lipoprotein cholesterol (RLP-C), triglyceride-rich lipoprotein-C (TRL-C), very low-density lipoprotein cholesterol (VLDL-C), and lipoprotein(a) [Lp(a)] levels have been associated with increased atherosclerotic cardiovascular disease (ASCVD) risk. However, these parameters have not been included in risk factors for ASCVD in the pooled cohort equation (PCE). Hypothesis: We assessed the hypothesis that these atherogenic lipoprotein parameters add significant information for ASCVD risk prediction in the Framingham Offspring Study. Methods: We evaluated 3,147 subjects without ASCVD at baseline (mean age 58 years) from participants of Framingham Offspring Study cycle 6, 677 (21.5%) of whom developed inclusive ASCVD over 16 years. Biomarkers of risk were assessed in frozen plasma samples. Total cholesterol, TG, HDL-C, direct LDL-C, sdLDL-C, LDL-TG, Lp(a), RLP-C, and TRL-C were measured by standardized automated analysis. Calculated LDL-C, large buoyant low-density lipoprotein cholesterol (lbLDL-C), VLDL-C, and non-HDL-C values were calculated. Data were analyzed using Cox proportional regression analysis and net reclassification improvement (NRI) analysis to identify parameters significantly associated with the incidence of ASCVD after controlling for standard ASCVD risk factor and applying the PCE model. Results: All specialized lipoprotein parameters were significant ASCVD risk factors on univariate analysis, but only direct LDL-C, sdLDL-C, and Lp(a) were significant on multivariate analysis with standard risk factors in the model. Together these parameters significantly improved the model c statistic (0.716 vs 0.732, P < 0.05) and net risk reclassification (mean NRI 0.104, P < 0.01) for ASCVD risk. Using the ASCVD risk pooled cohort equation, sdLDL-C, TG, LDL-TG, LDL-C, RLP-C, and TRL-C individually added significant information, but no other parameter added significant information with sdLDL-C (hazard ratio 1.30 for 75th vs 25th percentile, P < 0.0001) in the model. Conclusions: In multivariate analysis, sdLDL-C, direct LDL-C, and Lp(a) contributed significantly to ASCVD risk, but only sdLDL-C added significant risk information to the PCE model, indicating that sdLDL-C may be the most atherogenic lipoprotein particle.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Kausik K. Ray ◽  
Stefano Del Prato ◽  
Dirk Müller-Wieland ◽  
Bertrand Cariou ◽  
Helen M. Colhoun ◽  
...  

Abstract Background Individuals with diabetes often have high levels of atherogenic lipoproteins and cholesterol reflected by elevated low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B (ApoB), and LDL particle number (LDL-PN). The presence of atherosclerotic cardiovascular disease (ASCVD) increases the risk of future cardiovascular events. We evaluated the efficacy and safety of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, alirocumab, among individuals with type 2 diabetes (T2DM), high LDL-C or non-HDL-C, and established ASCVD receiving maximally tolerated statin in ODYSSEY DM-DYSLIPIDEMIA (NCT02642159) and DM-INSULIN (NCT02585778). Methods In DM-DYSLIPIDEMIA, individuals with T2DM and mixed dyslipidemia (non-HDL-C ≥ 100 mg/dL; n = 413) were randomized to open-label alirocumab 75 mg every 2 weeks (Q2W) or usual care (UC) for 24 weeks, with UC options selected before stratified randomization. In DM-INSULIN, insulin-treated individuals with T2DM (LDL-C ≥ 70 mg/dL; n = 441) were randomized in a double-blind fashion to alirocumab 75 mg Q2W or placebo for 24 weeks. Study participants also had a glycated hemoglobin < 9% (DM-DYSLIPIDEMIA) or < 10% (DM-INSULIN). Alirocumab dose was increased to 150 mg Q2W at week 12 if week 8 LDL-C was ≥ 70 mg/dL (DM-INSULIN) or non-HDL-C was ≥ 100 mg/dL (DM-DYSLIPIDEMIA). Lipid reductions and safety were assessed in patients with ASCVD from these studies. Results This analysis included 142 DM-DYSLIPIDEMIA and 177 DM-INSULIN participants with ASCVD, including 95.1% and 86.4% with coronary heart disease, and 32.4% and 49.7% with microvascular diabetes complications, respectively. At week 24, alirocumab significantly reduced LDL-C, non-HDL-C, ApoB, and LDL-PN from baseline versus control. This translated into a greater proportion of individuals achieving non-HDL-C < 100 mg/dL (64.6% alirocumab/23.8% UC [DM-DYSLIPIDEMIA]; 65.4% alirocumab/14.9% placebo [DM-INSULIN]) and ApoB < 80 mg/dL (75.1% alirocumab/35.4% UC and 76.8% alirocumab/24.8% placebo, respectively) versus control at week 24 (all P < 0.0001). In pooling these studies, 66.4% (alirocumab) and 67.0% (control) of individuals reported treatment-emergent adverse events. The adverse event pattern was similar with alirocumab versus controls. Conclusions Among individuals with T2DM and ASCVD who had high non-HDL-C/LDL-C levels despite maximally tolerated statin, alirocumab significantly reduced atherogenic cholesterol and LDL-PN versus control. Alirocumab was generally well tolerated. Trial registration Clinicaltrials.gov. NCT02642159. Registered 30 December 2015 and Clinicaltrials.gov. NCT02585778. Registered 23 October 2015


2020 ◽  
Vol 26 (10) ◽  
pp. 1196-1224 ◽  
Author(s):  
Yehuda Handelsman ◽  
Paul S. Jellinger ◽  
Chris K. Guerin ◽  
Zachary T. Bloomgarden ◽  
Eliot A. Brinton ◽  
...  

The treatment of lipid disorders begins with lifestyle therapy to improve nutrition, physical activity, weight, and other factors that affect lipids. Secondary causes of lipid disorders should be addressed, and pharmacologic therapy initiated based on a patient’s risk for atherosclerotic cardiovascular disease (ASCVD). Patients at extreme ASCVD risk should be treated with high-intensity statin therapy to achieve a goal low-density lipoprotein cholesterol (LDL-C) of <55 mg/dL, and those at very high ASCVD risk should be treated to achieve LDL-C <70 mg/dL. Treatment for moderate and high ASCVD risk patients may begin with a moderate-intensity statin to achieve an LDL-C <100 mg/dL, while the LDL-C goal is <130 mg/dL for those at low risk. In all cases, treatment should be intensified, including the addition of other LDL-C-lowering agents (i.e., proprotein convertase subtilisin/kexin type 9 inhibitors, ezetimibe, colesevelam, or bempedoic acid) as needed to achieve treatment goals. When targeting triglyceride levels, the desirable goal is <150 mg/dL. Statin therapy should be combined with a fibrate, prescription-grade omega-3 fatty acid, and/or niacin to reduce triglycerides in all patients with triglycerides ≥500 mg/dL, and icosapent ethyl should be added to a statin in any patient with established ASCVD or diabetes with ≥2 ASCVD risk factors and triglycerides between 135 and 499 mg/dL to prevent ASCVD events. Management of additional risk factors such as elevated lipoprotein(a) and statin intolerance is also described. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; ACS = acute coronary syndrome; apo B = apolipoprotein B; ASCVD = atherosclerotic cardiovascular disease; BA = bempedoic acid; CAC = coronary artery calcium; CHD = coronary heart disease; CK = creatine kinase; CKD = chronic kidney disease; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; FCS = familial chylomicronemia syndrome; FDA = United States Food and Drug Administration; FOURIER = Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk; HDL-C = high-density lipoprotein cholesterol; HeFH = heterozygous familial hypercholesterolemia; HoFH = homozygous familial hyper-cholesterolemia; hsCRP = high-sensitivity C reactive protein; IDL = intermediate-density lipoproteins; IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial; IPE = icosapent ethyl; LDL-C = low-density lipoprotein cholesterol; Lp(a) = lipoprotein a; MACE = major adverse cardiovascular events; MI = myocardial infarction; OSA = obstructive sleep apnea; PCSK9 = proprotein convertase subtilisin/kexin type 9; REDUCE-IT = Reduction of Cardiovascular Events with EPA-Intervention Trial; UKPDS = United Kingdom Prospective Diabetes Study; U.S. = United States; VLDL = very-low-density lipoproteins


2018 ◽  
Vol 47 (1) ◽  
pp. 265-270 ◽  
Author(s):  
Sinan Sarsam ◽  
Abeer Berry ◽  
George Degheim ◽  
Robby Singh ◽  
Marcel Zughaib

Objective Hyperlipidemia is an important risk factor for atherosclerotic cardiovascular disease. Many patients are intolerant to or have limited benefit from statins. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been approved for treating hyperlipidemia in these patients. We sought to investigate the impact of these medications in a real-world cardiology practice. Methods This was a retrospective study of 17 patients with either heterozygous familial hypercholesterolemia or established atherosclerotic cardiovascular disease with low-density lipoprotein cholesterol (LDL-C) levels above the treatment target despite maximally tolerated statins. Baseline lipid profile was compared with a repeat lipid profile obtained 4 to 6 weeks after initiating treatment with a PCSK9 inhibitor. Results The average duration of PCSK9 inhibitor treatment was 10.7 months. Lipid profile comparison showed that total cholesterol decreased from 243 ± 72 to 148 ± 39 (mg/dL) (39% reduction), triglycerides decreased from 185 ± 86 to 149 ± 62 (mg/dL) (19.5% reduction), high-density lipoprotein cholesterol increased from 56 ± 20 to 62 ± 26 (mg/dL) (10.7% increase), and LDL-C decreased from 154 ± 30 to 57 ± 32 (mg/dL) (63% reduction) from baseline. Conclusions PCSK9 inhibitors as add-on therapy to maximally tolerated statins resulted in an approximately 63% reduction in LDL-C.


Sign in / Sign up

Export Citation Format

Share Document