scholarly journals The Working Principle of a Turbine “Case Study: GE Frame 9E Gas Turbine”

Author(s):  
Obolo Olupitan Emmanuel

Gas Turbine is one of the machines that use the thermodynamic principle converting fuel energy to mechanical energy. It is an internal combustion engine. Also, designed to accelerate a stream of gas, which is used to produce a reactive thrust to propel an object or to produce mechanical power that turns a load. It functions in the same way as the internal combustion engine. It sucks in air from the atmosphere, and compress it. The fuel (gas) is injected and ignited (spark plug). The gases expand doing work and finally exhausts outside. Instead of reciprocating motion, the gas turbine uses a rotary motion throughout, and that is the only difference.

Author(s):  
Joseph Rabovitser ◽  
John M. Pratapas ◽  
James Kezerle ◽  
John Kasab

This paper reviews the technical approach and reports on the results of ASPEN Plus® modeling of two patented approaches for integrating a gas turbine with reciprocating internal combustion engine for lower emissions and higher efficiency power generation. In one approach, a partial oxidation gas turbine (POGT) is located in the 1st stage, and the H2-rich fuel gas from POGT exhaust is cooled and fed as main fuel to the second stage, ICE. In this case, the ICE operates in lean combustion mode. In the second approach, an ICE operates in partial oxidation mode (POX) in the 1st stage. The exhaust from the POX-ICE (a low BTU fuel gas) is combusted to drive a conventional GT in the 2nd stage of the integrated system. In both versions, use of staged reheat combustion leads to predictions of higher efficiency and lower emissions compared to independently providing the same amount of fuel to separate GT and ICE where both are configured for lean combustion. The POGT and GT analyzed in the integrated systems are based upon building them from commercially available turbocharger components (turbo-compressor and turbo-expander). Modeling results with assumptions predicting 50–52% LHV fuel to power system efficiency and supporting NOx < 9 ppm for gaseous fuels are presented for these GT-ICE integrated systems.


Authors Rusinov R.V., Hoodorozhkov S.I., Dobretsov R.Yu., [email protected]. Estimation of the efficiency of the thermal cycle of a piston internal combustion engine The article proposes a simplified technique for the operational assessment of the efficiency of the heat cycle of a piston internal combustion engine. A feature of the developed computational model is the release of the amount of heat consumed for the production of only mechanical energy in the form of a separate component of the heat balance of the cycle. The value of this component is determined by calculation (or according to the results of experiments) in advance, which makes it possible to reduce the number of pre(determined initial data. The methodology is based on a mathematical description of thermodynamic processes occurring during the development of the thermal cycle of an engine with ignition of the working mixture from compression (diesel engine), which allows it to be expanded to new engines of design, including those operating under electronic control. The objects for the application of the calculation method can be diesel engines installed on transport vehicles, both individually and as part of a hybrid power plant, as well as engines of stationary or transportable power plants. The very principle underlying the model can be implemented for engines of other purposes and other thermal cycles. Keywords: heat cycle; the working process; diesel; heat content of the working fluid; expansion


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Roberto Deboli ◽  
Angela Calvo ◽  
Venerando Rapisarda ◽  
Christian Preti ◽  
Marco Inserillo

To correctly evaluate the vibration transmitted to the operators, it is necessary to consider each body’s point interested by the vibratory stimulus produced by machines. All the body’s part in contact to the vibration, when a portable device with internal combustion engine is used, are: hands, back and shoulders. Some information for wholebody vibration are available in the ISO 2631-1997 standard, which otherwise refers to a seated operator. ‘C’ type standards for the vibration analysis exist for some portable machines with an internal combustion engine which is comprehensive in the machine (chainsaw, brush-cutter, blower). If the engine is not inside the machine, but it is on the operator’s back, ‘C’ type standards on vibration measurements are quite incomplete. The IMAMOTER institute of CNR, the DISAFA Department (University of Turin) and the Occupational Medicine Department of the University of Catania started some tests to verify the vibration levels transmitted to an operator working with backed engine devices. Two machines have been examined: a blower and a spraying machine. Two operative conditions have been considered during all the tests: idling and full load. Three operators have been involved and each test has been repeated three times. The spraying machine has been tested both with the empty tank and with 10 litres of water, to simulate the load to be caused by the presence of liquid inside the tank. In this work the comfort condition of ISO 2631-1 standard was considered, using the frequency weighting Wc curve with the weighting factor 0.8 for X axis (back-ventral direction) and the Wd curve for Y and Z axis (shoulder - shoulder and buttocks - head) with weighting factors 0.5 and 0.4 (respectively for Y and Z axis). Data were examined using IBM SPSS Statistics 20 software package. The statistical analysis underlined that the running condition is the main factor to condition the vibration levels transmitted to the operator’s back, while the ballast and the operators are influent when the running conditions are distinguished. Concerning medical investigation, lower back and shoulders are the main critical part of the body interested by vibration transmitted to each operator.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 413 ◽  
Author(s):  
Marina Montero Carrero ◽  
Irene Rodríguez Sánchez ◽  
Ward De Paepe ◽  
Alessandro Parente ◽  
Francesco Contino

If more widely deployed, small-scale cogeneration could increase energy efficiency in Europe. Of the two main commercially available technologies—the Internal Combustion Engine (ICE) and the micro Gas Turbine (mGT)—the ICE dominates the market due to its higher electrical efficiency. However, by transforming the mGT into a micro Humid Air Turbine (mHAT), the electrical efficiency of this cycle can increase, thus enhancing its operational flexibility. This paper presents an in-depth policy and economic assessment of the the ICE, mGT and mHAT technologies for dwellings based in Spain, France and Belgium. The hourly demands of average households, the market conditions and the subsidies applicable in each region are considered. The aim is twofold: to evaluate the profitability of the technologies and to assess the cogeneration policies in place. The results show that only the ICE in Brussels is economically viable, despite all units providing positive energy savings in all locations (except mHAT in Spain). Of the three different green certificate schemes offered in Belgium, Brussels is the one leading to the best outcome. Spain awards both capital and operational helps, although auto-consumption is not valued. The same applies to the complex French feed-in tariff. Conclusively, with the current policies, investing in small-scale cogeneration is in general not attractive and its potential efficiency gains remain unveiled.


Sign in / Sign up

Export Citation Format

Share Document