scholarly journals Predicting Soccer Ball Target through Dynamic Simulation

Author(s):  
Ying Li ◽  
Junxian Meng ◽  
Qi Li

The intelligent sports analysis of a soccer ball requires accurately simulating its motion and finding the best design parameters (position and orientation) to kick the ball.  An optimization method is proposed to plan, evaluate, and optimize the traveling trajectory of a soccer ball. The theoretical studies go through the multi-body dynamics modeling, dynamic simulation, and optimal objective modeling Based on Newton second law and Hooke’s law, the motion of a soccer ball is established as the time-dependent ordinary differential equations (ODEs). The expected target is expressed as a function of all design parameters. An example is used to simulate a soccer ball shooting a goal. The result of optimization design has given the most optimal combination of the design parameters, which involve theinitial velocity,initial projectile angle, andinitial orientation angle. This research provides a useful method in predicting the trajectory and adjusting the design parameters for the optimization design of a soccer ball motion.

Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


2019 ◽  
Vol 141 ◽  
pp. 305-321 ◽  
Author(s):  
Jiao He ◽  
Xin Jin ◽  
S.Y. Xie ◽  
Le Cao ◽  
Yifan Lin ◽  
...  

2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


2021 ◽  
pp. 67-67
Author(s):  
FaTing Yuan ◽  
Shouwei Yang ◽  
Shihong Qin ◽  
Kai Lv ◽  
Bo Tang ◽  
...  

In this paper, a fluid-thermal coupled finite element model is established according to the design parameters of dry type air core reactor. The detailed temperature distribution can be achieved, the maximum error coefficient of temperature rise is only 6% compared with the test results of prototype, and the accuracy of finite element calculate method is verified. Taking the equal height and heat flux design parameters of reactor as research object, the natural convection cooling performance of reactor with and without the rain cover is investigated. It can be found that the temperature rise of reactor is significantly increased when adding the rain cover, and the reasons are given by analyzing the fluid velocity distribution of air dcuts between the encapsulation coils. In order to reduce the temperature rise of the reactor with the rain cover, the optimization method based on the orthogonal experiment design and finite element method is proposed. The six factors of the double rain cover are given, which mainly affect the temperature rise of reactor, and the five levels are selected, the influence curve and contribution rate of each factor on the temperature rise of reactor are analyzed. The results show that the contribution ratio of the parameter H1, L1 and L2, are obviously higher than the parameter H2, L3 and ?, so the more attention should be paid in the design of double rain cover. Meanwhile, the optimal structural parameters of rain cover are given based on the influence curves, and the temperature rise is only 43.25?C. The results show that the optimization method can reduce the temperature rise of reactor significantly. In addition, the temperature distribution of inner encapsulations coils of reactor are basically the same, the current carrying capacity of coils can be fully utilized, which provides an important guidance for the optimization design of reactor.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ruixian Qin ◽  
Bingzhi Chen

Lumped parameter modeling (LPM) combined with optimization techniques is an efficient approach for parametric configuration design of energy absorption to improve crashworthiness performance during train collision. This work proposed a simplified model by introducing a bar element to consider the influence of the carbody in a collision process. The optimization method is applied to calibrate the equivalent parameters of the bar element. Bar elements with calibrated parameters are adopted in establishing a one-dimensional (1D) model for the train crash. Subsequently, a novel crash energy management (CEM) mode with functionally graded energy (FGE) configuration is introduced to the train crash model for improving crashworthiness performance. The influence of parameters in graded function on interfacial force and peak acceleration is investigated and optimal design parameters are obtained by Nondominated Sorting Genetic Algorithm (NSGA-II). It is concluded that considering the behavior of the carbody can improve the accuracy of LPM in predicting the longitudinal response, and the gradient CEM is a potential energy configuration mode to improve the crashworthiness of the train in a collision.


2012 ◽  
Vol 215-216 ◽  
pp. 946-949 ◽  
Author(s):  
Yang Liu ◽  
Jian Xin Liu ◽  
Yu Jiang Guo

For the railway vehicles,flat damage on wheels is a very common defects,the sudden impact and vibration caused by flat damage on wheels endangers the wheels and the rail components a lot.The cause for flat damage on wheels,its physical characteristic, geometric representation,and its precaution are discussed in this paper,and applied to the Simpack multi-body dynamics software, a input form for flat damage on wheel was given.


Sign in / Sign up

Export Citation Format

Share Document