scholarly journals Research on the Monocular Ranging Method of the Leading Vehicle in Multi-weather

Author(s):  
Yong Tian ◽  
Quancai Li ◽  
Shuman Guo ◽  
Gongrou Fu ◽  
Shichang Wang ◽  
...  

In order to improve the accuracy of the monocular distance measurement of the vehicle in front under sunny, cloudy, rainy, snowy, and foggy weather, an improved pixel-mapping monocular distance measurement method is proposed. This method is based on eight-connected domains to detect the front vehicle, obtain the line pixels of the target vehicle in the image, and fit the image line pixels to the corresponding real longitudinal distance function, and combine the fitted function with the internal and external parameters of the camera. An improved pixel-mapping monocular ranging model is obtained. Set up a test environment under different weather to verify the feasibility of the algorithm. The results show that in the four environments, the detectable distances are within 70m, 60m, 30m, and 40m respectively; the error of the improved pixel-mapping monocular ranging method is reduced by 0.6% on average compared with before the improvement, up to 0.92% ; The improved algorithm ranging errors under the four weathers are 1.8513%, 2.6987%, 4.0137%, and 2.5795% respectively, which achieves the purpose of improving the accuracy of the monocular distance measurement of the vehicle in front under multiple weather conditions.

2015 ◽  
Vol 135 (11) ◽  
pp. 1349-1350
Author(s):  
Kazuhiro Suzuki ◽  
Noboru Nakasako ◽  
Masato Nakayama ◽  
Toshihiro Shinohara ◽  
Tetsuji Uebo

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


2014 ◽  
Vol 97 (8) ◽  
pp. 24-31
Author(s):  
Noboru Nakasako ◽  
Toshihiro Shinohara ◽  
Keiji Kawanishi ◽  
Tetsuji Uebo

2008 ◽  
Vol 8 (5) ◽  
pp. 17939-17986 ◽  
Author(s):  
M. Schaap ◽  
A. Apituley ◽  
R. M. A. Timmermans ◽  
R. B. A. Koelemeijer ◽  
G. de Leeuw

Abstract. To acquire daily estimates of PM2.5 distributions based on satellite data one depends critically on an established relation between AOD and ground level PM2.5. In this study we aimed to experimentally establish the AOD-PM2.5 relationship for the Netherlands. For that purpose an experiment was set-up at the AERONET site Cabauw. The average PM2.5 concentration during this ten month study was 18 μg/m3, which confirms that the Netherlands are characterised by a high PM burden. A first inspection of the AERONET level 1.5 (L1.5) AOD and PM2.5 data at Cabauw showed a low correlation between the two properties. However, after screening for cloud contamination in the AERONET L1.5 data, the correlation improved substantially. When also constraining the dataset to data points acquired around noon, the correlation between AOD and PM2.5 amounted to R2=0.6 for situations with fair weather. This indicates that AOD data contain information about the temporal evolution of PM2.5. We had used LIDAR observations to detect residual cloud contamination in the AERONET L1.5 data. Comparison of our cloud-screed L1.5 with AERONET L2 data that became available near the end of the study showed favorable agreement. The final relation found for Cabauw is PM2.5=124.5*AOD–0.34 (with PM2.5 in μg/m3) and is valid for fair weather conditions. The relationship determined between MODIS AOD and ground level PM2.5 at Cabauw is very similar to that based on the much larger dataset from the sun photometer data, after correcting for a systematic overestimation of the MODIS data of 0.05. We applied the relationship to a MODIS composite map to assess the PM2.5 distribution over the Netherlands. Spatial dependent systematic errors in the MODIS AOD, probably related to variability in surface reflectance, hamper a meaningful analysis of the spatial distribution of PM2.5 using AOD data at the scale of the Netherlands.


our aim is to develop a project that will benefit society. But nowadays it is employed to assist human in surveillance, rescue and recovery missions. This paper presents the prototype model of an UGV which is operated wirelessly through manual navigation commands based on the live video captured from the IP camera mounted on the board. The distance measurement is done by the Ultrasonic sensor from the obstacle and displayed in the LCD. The target tracking as well as attacking is done based on the obstacle and environment situation monitored in the live video. This complete set up and working of the UGV is described further in this paper


2017 ◽  
Vol 50 (5) ◽  
pp. 1341-1351 ◽  
Author(s):  
Qing-Di Cheng ◽  
Rui-Qing Chen ◽  
Jin He ◽  
Da-Wei Li ◽  
Fan Yang ◽  
...  

Protein crystallization is a delicate process that is always sensitive to environmental factors. When the environmental factors are not well controlled or not controlled at all, identical crystallization droplets from the same mother liquid may yield different crystallization results. One environmental factor, the weather conditions during crystallization solution preparation, is not usually considered as a parameter for protein crystallization. In this paper, it is shown that the weather parameters during preparation of the crystallization experiment, including the ambient temperature, humidity, pressure and particulate matter in the air, can all affect the reproducibility of lysozyme crystallization. An identical lysozyme crystallization experiment was repeated for an entire year, and the weather conditions when each crystallization experiment was set up were recorded along with the crystallization results. Among the parameters recorded, the humidity during the experiment setup showed the strongest effect on lysozyme crystallization. On the basis of these results, it is suggested that the weather conditions during crystallization solution preparation should be considered as a potential factor that can influence protein crystallization.


2020 ◽  
pp. bmjmilitary-2020-001551
Author(s):  
Patricia Falconer Hall ◽  
J Blackadder-Coward ◽  
H Pynn

IntroductionHeat illness among the UK Armed Forces is usually exertional, and therefore preventable, yet the incidence has not reduced since 2011. JSP 539 explicitly states that wet bulb globe temperature (WBGT) should be measured ‘at the location of greatest heat risk’, not ‘that of most convenience’. A handheld WBGT tracker used at point-of-exertion could reduce this incidence if proven to be as accurate as the current in-service device.MethodsLongitudinal observational comparison and equipment feasibility study of the Kestrel 5400 and QUESTemp 34 (QT-34) in worldwide firm base and deployed UK Armed Forces locations. The locations chosen were Kenya, South Sudan, Belize, Tidworth, Aldershot and Brecon. Paired data points of WBGT readings were collected from November 2017 to August 2018 in all weather conditions.ResultsWBGT readings were comparable between the QT-34 and Kestrel 5400 across the UK and overseas. In addition, there was no change in accuracy between readings taken from the Kestrel 5400 when tripod-mounted and handheld. The Kestrel was easy to set up and far less susceptible to resupply or power supply limitations, as it requires no user input for wet bulb temperature, and runs on AA batteries.ConclusionThis equipment feasibility study has shown that the Kestrel 5400 gives an acceptable accuracy and is easier to use than the QT-34. The authors recommend that the Kestrel 5400 is introduced as an adjunct to the QT-34, and its use within the military setting monitored through ongoing comparative data collection in a large-scale proof-of-concept study.


Sign in / Sign up

Export Citation Format

Share Document