scholarly journals SFC Programs for Synchronous Positioning Control at Pressure Control among Multi-AC Servomotors Driven in Injection Molding Machine

2006 ◽  
Vol 42 (4) ◽  
pp. 421-428
Author(s):  
Noriyuki AKASAKA ◽  
Kuninori OOSAKI
2004 ◽  
Vol 16 (4) ◽  
pp. 348-354
Author(s):  
Noriyuki Akasaka ◽  

With the trend toward higher-power electric-motor-driven injection molding machines, multi-AC servomotor control is needed to control the molding machine, making synchronous positioning control inevitable to prevent excessive mechanical stress in equipment. Synchronous positioning control in injection velocity control is implemented by using position feedback signals from motor pulse generators. In injection pressure control synchronous positioning control is difficult to realize because pressure-detector signals are used in place of position feedback signals. We clarified synchronous positioning control during injection pressure control by using both pressure-detector and position feedback signals. Simulation results showed that synchronous positioning control error was less than ±4μm in pressure control.


2019 ◽  
Vol 12 (4) ◽  
pp. 378-382
Author(s):  
Shan Syedhidayat ◽  
Quan Wang ◽  
Al-Hadad M.A.A. Mohsen ◽  
Jinrong Wang

Background: One of the most common manufacturing equipment for polymer product is injection molding machine. In order to ensure the precise, stable and continuous operation of the injection molding machine, the maintenance of the lubrication system must be done well. The stability, reliability, rationality and low noise performance of the lubrication system of injection molding machine directly affect the quality of injection products, dimensional accuracy, molding cycle, working environment and maintenance. Objective: The purpose of this study is to introduce the methods of choice, maintenance of lubricating oil for injection molding machine from many literatures and patents in the recent years, such as lubricating oil device, lubricating composite and structure. Methods: An example of the 260M5 automatic injection molding machine is introduced for the inspection and maintenance of the lubrication system including lubricating oil and lubricating grease. Results: To ensure the lubrication of the injection molding machine, it needs to strictly observe the lubrication time and modulus of the injection molding machine. It needs to strictly control the temperature rise of the lubricating oil and select the correct lubricating oil and grease to ensure the lubrication quality. Conclusion: In the operation of the injection molding machine, it is necessary to check that the lubricating oil is sufficient and the lubricating points are working properly. It ensures sufficient lubrication of the injection molding machine and strictly observes the lubrication time and modulus of the injection molding machine. The stored lubricating oil should be sealed well to prevent air pollution.


2016 ◽  
Vol 36 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Quan Wang ◽  
Zhenghuan Wu

Abstract This paper presents a study of the characteristics of axial vibration of a screw in the filling process for a novel dynamic injection molding machine. By simplifying a generalized model of the injection screw, physical and mathematic models are established to describe the dynamic response of the axial vibration of a screw using the method of lumped-mass. The damping coefficient of the screw is calculated in the dynamic filling process. The amplitude-frequency characteristics are analyzed by the simulation and experimental test of polypropylene. The results show that the amplitude of a dynamic injection molding machine is not only is related to structure parameters of the screw and performance of the material, such as non-Newtonian index, but also depends on the processing parameters, such as vibration intensity and injection speed.


Sign in / Sign up

Export Citation Format

Share Document