scholarly journals NEARSHORE WAVE DAMPING DUE TO THE EFFECT ON WINDS IN RESPONSE TO OFFSHORE WIND FARMS

2012 ◽  
Vol 1 (33) ◽  
pp. 55
Author(s):  
Ruben Rodriguez Gandara ◽  
John Harris

Despite the progress that has been made in modeling wind wake interaction between turbines in offshore wind farms, only a handful of studies have quantified the impact of wind turbines or wave farms upon surface waves, and there are even less articles about the wave blockage induced by the whole array of turbines upon wind waves. This hypothetical case study proposes a methodology that takes into account the combined effect of wind wake and wave blockage on wind waves when transforming offshore waves to nearshore in an offshore wind farm scenario.

2021 ◽  
Author(s):  
Morteza Bahadori ◽  
Hassan Ghassemi

Abstract In recent years, as more offshore wind farms have been constructed, the possibility of integrating various offshore renewable technologies is increased. Using offshore wind and solar power resources as a hybrid system provides several advantages including optimized marine space utilization, reduced maintenance and operation costs, and relieving wind variability on output power. In this research, both offshore wind and solar resources are analyzed based on accurate data through a case study in Shark Bay (Australia), where bathymetric information confirms using offshore bottom-fixed wind turbine regarding the depth of water. Also, the power production of the hybrid system of co-located bottom-fixed wind turbine and floating photovoltaic are investigated with the technical characteristics of commercial mono-pile wind turbine and photovoltaic panels. Despite the offshore wind, the solar energy output has negligible variation across the case study area, therefore using the solar platform in deep water is not an efficient option. It is demonstrated that the floating solar has a power production rate nearly six times more than a typical offshore wind farm with the same occupied area. Also, output energy and surface power density of the hybrid offshore windsolar system are improved significantly compared to a standalone offshore wind farm. The benefits of offshore wind and solar synergies augment the efficiency of current offshore wind farms throughout the world.


2018 ◽  
Vol 77 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Jean-Philippe Pezy ◽  
Aurore Raoux ◽  
Jean-Claude Dauvin

Abstract The French government is planning the construction of offshore wind farms (OWF) in the next decade (around 2900 MW). Following the European Environmental Impact Assessment Directive 85/337/EEC, several studies have been undertaken to identify the environmental conditions and ecosystem functioning at selected sites prior to OWF construction. However, these studies are generally focused on the conservation of some species and there is no holistic approach for analysing the effects arising from OWF construction and operation. The objective of this article is to promote a sampling strategy to collect data on the different ecosystem compartments of the future Dieppe-Le Tréport (DLT) wind farm site, adopting an ecosystem approach, which could be applied to other OWFs for the implementation of a trophic network analysis. For that purpose, an Ecopath model is used here to derive indices from Ecological Network Analysis (ENA) to investigate the ecosystem structure and functioning. The results show that the ecosystem is most likely detritus-based, associated with a biomass dominated by bivalves, which could act as a dead end for a classic trophic food web since their consumption by top predators is low in comparison to their biomass. The systemic approach developed for DLT OWF site should be applied for other French and European installations of Offshore Wind Farm.


Author(s):  
Caitlin Forinash ◽  
Bryony DuPont

An Extended Pattern Search (EPS) approach is developed for offshore floating wind farm layout optimization while considering challenges such as high cost and harsh ocean environments. This multi-level optimization method minimizes the costs of installation and operations and maintenance, and maximizes power development in a unidirectional wind case by selecting the size and position of turbines. The EPS combines a deterministic pattern search algorithm with three stochastic extensions to avoid local optima. The EPS has been successfully applied to onshore wind farm optimization and enables the inclusion of advanced modeling as new technologies for floating offshore wind farms emerge. Three advanced models are incorporated into this work: (1) a cost model developed specifically for this work, (2) a power development model that selects hub height and rotor radius to optimize power production, and (3) a wake propagation and interaction model that determines aerodynamic effects. Preliminary results indicate the differences between proposed optimal offshore wind farm layouts and those developed by similar methods for onshore wind farms. The objective of this work is to maximize profit; given similar parameters, offshore wind farms are suggested to have approximately 24% more turbines than onshore farms of the same area. EPS layouts are also compared to those of an Adapted GA; 100% efficiency is found for layouts containing twice as many turbines as the layout presented by the Adapted GA. Best practices are derived that can be employed by offshore wind farm developers to improve the layout of platforms, and may contribute to reducing barriers to implementation, enabling developers and policy makers to have a clearer understanding of the resulting cost and power production of computationally optimized farms; however, the unidirectional wind case used in this work limits the representation of optimized layouts at real wind sites. Since there are currently no multi-turbine floating offshore wind farm projects operational in the United States, it is anticipated that this work will be used by developers when planning array layouts for future offshore floating wind farms.


2021 ◽  
Author(s):  
Miteshkumar Nandlal Popat

Recently, offshore wind farms have emerged as the most promising sector in the global renewable energy industry. The main reasons for the rapid development of offshore wind farms includes much better wind resources and smaller environmental impact (e.g., audible noise and visual effect). However, the current state of the offshore wind power presents economic challenges significantly greater than onshore. In this thesis, a novel interconnecting method for permanent magnet synchronous generator (PMSG)-based offshore wind farm is proposed, where cascaded pulse-width modulated (PWM) current-source converters (CSCs) are employed on both generator- and grid-side. With the converters in cascade to achieve high operating voltages, the proposed method eliminates the need for bulky and very costly offshore converter substation which is usually employed in voltage source converter (VSC) high voltage DC (HVDC)-based counterparts. Related research in terms of control schemes and grid integration are carried out to adapt the proposed cascaded CSC-based offshore wind farm configuration. The large distance between generator- and grid-side CSC in the proposed wind farm configuration addresses significant challenges for the system control. In order to overcome the problem, a novel decoupled control scheme is developed. The active and reactive power control on the grid-side converters are achieved without any exchange of information from the generator-side controller. Therefore, the long distance communication links between the generator- and grid-side converters are eliminated and both controllers are completely decoupled. At the same time, the maximum power tracking control is achieved for the generator-side converters that enable full utilization of the wind energy. Considering inconsistent wind speed at each turbine, a coordinated control scheme is proposed for the cascaded CSC-based offshore wind farm. In proposed control strategy, the wind farm supervisory control (WFSC) is developed to generate the optimized dc-link current control. This enables all the turbines to independently track their own MPPT even with inconsistent wind speed at each turbine. Grid integration issues, especially the fault ride-through (FRT) capability for the cascaded CSC-based offshore wind farm are addressed. Challenges in implementing existing FRT methods to the proposed offshore wind farm are identified. Based on this, a new FRT strategy using inherent short circuit operating capability of the CSC is developed. Moreover, the mitigation strategy is developed to ensure the continuous operation of the cascaded CSC-based offshore wind farm when one or more turbines fail to operate. Simulation and experimental verification for various objectives are provided throughout the thesis. The results validate the proposed solutions for the main challenges of the cascaded current source converter based offshore wind farm.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peilin Lv ◽  
Rong Zhen ◽  
Zheping Shao

Offshore wind power is an effective way to solve the energy crisis problem and achieve sustainable economic development. Aiming at the problems that the navigational risk of ships in the waters of offshore wind farms is difficult to quantify due to complex factors, this paper proposes a method of navigational risk assessment in the waters of offshore wind farms based on a fuzzy inference system. Firstly, through the analysis of the factors affecting the navigation system of wind farm waters, it is found that the navigational risk is affected by natural factors and navigational environment factors. Then, the visibility, the number of traffic flows, the number of encounter areas, and the distance between the sailing route and the wind farm are extracted to evaluate the risk of natural factors and the risk of the sailing environment in the navigation system of the wind farm waters, respectively. Considering the mutual influence of the factors, the fuzzy inference rules of navigational risk influence are established according to the expert experience, and a method of navigational risk assessment based on the fuzzy inference system in offshore wind farm waters is developed. In order to verify the effectiveness of the proposed method, a comprehensive evaluation of the navigational risk of wind farm waters in Changle offshore sea of Fujian Province is carried out, and the evaluation results are consistent with the actual situation. The proposed method has important theoretical significance for the navigational safety supervision of offshore wind farm waters.


Author(s):  
Ekkehard Stade

Offshore wind farms present a lesser safety risk to operators and contractors than traditional oil and gas installations. In the post Macondo world this does not come as a surprise since the risks involved in construction, operation and maintenance of an offshore wind farm are by far lower. Even with higher probability of incidents and near misses (due to serial construction) the severity/ impact of those is considerably lower. On the other hand projects are complex, profit margins are what they are called: marginal. Hence there is no room for errors, perhaps in form of delays. If, for example, the installation completion of the turbines and the inner array cabling/ export cables are not perfectly in tune, the little commercial success that can be achieved is rapidly diminishing by costly compensation activities. The paper will try to present solutions to the most pressing challenges and elaborate on the effect those would have had, had they been implemented at the beginning of the projects. How can a sustainable new industry evolve by learning from established industries? Presently, there is a view that offshore wind is a short-lived business. Particularly representatives of the oil and gas industry raise such concern. Apart from the obvious bias of those voices, this controversy is also caused by the fact that offshore wind seems to have a tendency to try and re-invent the wheel rather than using established procedures. Even with a relatively stable commitment to the offshore wind development regardless of the respective government focus within European coastal states the industry suffers from financing issues, subsidies, over-regulation due to lack of expertise within authorities and other challenges. The avoidance of those is key to a successful development for this industry in other areas of the planet. In conjunction with a stable commitment this is essential in order to attract the long lead-time projects and to establish the complex supply chains to achieve above goals. The paper will look at the short but intensive history of the industry and establish mitigation to some of the involved risks of offshore wind farm EPCI.


2013 ◽  
Vol 155 (A3) ◽  

Europe is currently facing an energetic revolution. Several offshore wind farm projects are currently under construction or under planning in North and Baltic Sea. Typical foundation structures for offshore wind farms are steel open-ended monopiles with large diameters up to 6 m. Currently, the monopiles are installed by driving with large impact hammers. However, there are many situations where pile refusal is reached, due to hard soil layers or erratic blocks. Driving and drilling technique is therefore applied. This manuscript briefly describes the trench cutter technology normally used for foundation works on land. Three case histories onshore and one offshore project are discussed and the evolution of the trench cutter technology for supporting the installation of offshore monopile is described.


2018 ◽  
Vol 51 ◽  
pp. 01004
Author(s):  
Alina Raileanu ◽  
Florin Onea ◽  
Liliana Rusu

The objective of the present work is to estimate the influence of several hybrid wind and wave farm configurations on the wave conditions reported in the vicinity of the Saint George coastal area, in the Romanian nearshore of the Black Sea. Based on the wave data coming from a climatological database (ERA20C) and also on in situ measurements, it was possible to identify the most relevant wave patterns, which will be further considered for assessment. The numerical simulations were carried out with the SWAN (Simulating Waves Nearshore) wave model, which may provide a comprehensive picture of the wave transformation in the presence of the marine farms. Although the impact of the wind farm is not visible from the spatial maps, from the analysis of the values corresponding to the reference points, it was noticed that a maximum variation of 2% may occur for several wave parameters.


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Annette Westerhellweg ◽  
Beatriz Cañadillas ◽  
Friederike Kinder ◽  
Thomas Neumann

AbstractSince August 2009, the first German offshore wind farm ‘alpha ventus’ is operating close to the wind measurement platform FINO1. Within the research project RAVE-OWEA the wind flow conditions in ‘alpha ventus’ were assessed in detail, simulated with a CFD wake model and compared with the measurements. Wind data measured at FINO1 have been evaluated for wind speed reduction and turbulence increase in the wake. Additionally operational data were evaluated for the farm efficiency. The atmospheric stability has been evaluated by temperature measurements of air and water and the impact of atmospheric stability on the wind conditions in the wake has been assessed. As an application of CFD models the generation of power matrices is introduced. Power matrices can be used for the continual monitoring of the single wind turbines in the wind farm. A power matrix based on CFD simulations has been created for ‘alpha ventus’ and tested against the measured data.


Sign in / Sign up

Export Citation Format

Share Document