SPH MODELING OF VORTICITY GENERATION BY SHORT-CRESTED WAVE BREAKING

Author(s):  
Zhangping Wei ◽  
Robert A Dalrymple

This study investigates vorticity generation by short-crested wave breaking by using the mesh-free Smoothed Particle Hydrodynamics model, GPUSPH. The short-crested waves are created by generating intersecting wave trains in a numerical wave basin with a beach. The capability of GPUSPH to simulate short-crested waves is first validated by laboratory measurements. Then we examine short-crested wave breaking with two incident wave heights H = 0.2 m and 0.3 m. The larger incident wave breaks at the toe of the planar beach, while the smaller incident wave breaks above the planar beach. The breaking wave profile, current field, nearshore circulation pattern, and vertical vorticity field due to short-crested wave breaking are carefully compared between two incident waves.

Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


2021 ◽  
Vol 11 (3) ◽  
pp. 1020
Author(s):  
Mohamadreza Afrasiabi ◽  
Hagen Klippel ◽  
Matthias Roethlin ◽  
Konrad Wegener

Smoothed Particle Hydrodynamics (SPH) is a mesh-free numerical method that can simulate metal cutting problems efficiently. The thermal modeling of such processes with SPH, nevertheless, is not straightforward. The difficulty is rooted in the computationally demanding procedures regarding convergence properties and boundary treatments, both known as SPH Grand Challenges. This paper, therefore, intends to rectify these issues in SPH cutting models by proposing two improvements: (1) Implementing a higher-order Laplacian formulation to solve the heat equation more accurately. (2) Introducing a more realistic thermal boundary condition using a robust surface detection algorithm. We employ the proposed framework to simulate an orthogonal cutting process and validate the numerical results against the available experimental measurements.


2021 ◽  
Vol 11 (12) ◽  
pp. 5751
Author(s):  
Seyed Ali Mousavi Tayebi ◽  
Saeid Moussavi Tayyebi ◽  
Manuel Pastor

Due to the growing populations in areas at high risk of natural disasters, hazard and risk assessments of landslides have attracted significant attention from researchers worldwide. In order to assess potential risks and design possible countermeasures, it is necessary to have a better understanding of this phenomenon and its mechanism. As a result, the prediction of landslide evolution using continuum dynamic modeling implemented in advanced simulation tools is becoming more important. We analyzed a depth-integrated, two-phase model implemented in two different sets of code to stimulate rapid landslides, such as debris flows and rock avalanches. The first set of code, r.avaflow, represents a GIS-based computational framework and employs the NOC-TVD numerical scheme. The second set of code, GeoFlow-SPH, is based on the mesh-free numerical method of smoothed particle hydrodynamics (SPH) with the capability of describing pore pressure’s evolution along the vertical distribution of flowing mass. Two real cases of an Acheron rock avalanche and Sham Tseng San Tsuen debris flow were used with the best fit values of geotechnical parameters obtained in the prior modeling to investigate the capabilities of the sets of code. Comparison of the results evidenced that both sets of code were capable of properly reproducing the run-out distance, deposition thickness, and deposition shape in the benchmark exercises. However, the values of maximum propagation velocities and thickness were considerably different, suggesting that using more than one set of simulation code allows us to predict more accurately the possible scenarios and design more effective countermeasures.


1976 ◽  
Vol 1 (15) ◽  
pp. 85 ◽  
Author(s):  
Michael K. Gaughan ◽  
Paul D. Komar

A series of wave basin experiments were undertaken to better understand the selection of groin spacings and lengths. Rather than obtaining edge waves with the same period as the normal incident waves, subharmonic edge waves were produced with a period twice that of the incoming waves and a wave length equal to the groin spacing. Rip currents were therefore not formed by the interactions of the synchronous edge waves and normal waves as proposed by Bowen and Inman (1969). Rips were present in the wave basin but their origin is uncertain and they were never strong enough to cause beach erosion. The generation of strong subharmonic edge waves conforms with the work of Guza and Davis (1974) and Guza and Inman (1975). The subharmonic edge waves interacted with the incoming waves to give an alternating sequence of surging and collapsing breakers along the beach. Their effects on the swash were sufficient to erode the beach in some places and cause deposition in other places. Thus major rearrangements of the sand were produced between the groins, but significant erosion did not occur as had been anticipated when the study began. By progressively decreasing the length of the submerged portions of the groins, it was found that the strength (amplitude) of the edge waves decreases. A critical submerged groin length was determined whereby the normally incident wave field could not generate resonant subharmonic edge waves of mode zero with a wavelength equal to the groin spacing. The ratio of this critical length to the spacing of the groins was found in the experiments to be approximately 0.15 to 0.20, and did not vary with the steepness of the normal incident waves.


2020 ◽  
Vol 10 (24) ◽  
pp. 8983
Author(s):  
A. Ersin Dinçer ◽  
Abdullah Demir

In this study, a numerical model is proposed for the analysis of a simply supported structural cable. Smoothed particle hydrodynamics (SPH)—a mesh-free, Lagrangian method with advantages for analysis of highly deformable bodies—is utilized to model a cable. In the proposed numerical model, it is assumed that a cable has only longitudinal stiffness in tension. Accordingly, SPH equations derived for solid mechanics are adapted for a structural cable, for the first time. Besides, a proper damping parameter is introduced to capture the behavior of the cable more realistically. In order to validate the proposed numerical model, different experimental and numerical studies available in the literature are used. In addition, novel experiments are carried out. In the experiments, different harmonic motions are applied to a uniformly loaded cable. Results show that the SPH method is an appropriate method to simulate the structural cable.


2010 ◽  
Vol 82 (4) ◽  
Author(s):  
M. V. Yakutovich ◽  
C. M. Care ◽  
C. J. P. Newton ◽  
D. J. Cleaver

Author(s):  
Ayan Moitra ◽  
Christopher Chabalko ◽  
Balakumar Balachandran

Smoothed particle hydrodynamics (SPH) is used to simulate hydrodynamic waves and wave phenomena including focusing from wave interference. This Lagrangian based method can be used to naturally simulate hydrodynamic free surfaces, including the free surface of a breaking wave. A virtual wave tank is simulated where wave motions can be excited from either side. Wave focusing is observed at the tank center, where the waves interfere. As a measure of the interference, the wave heights that result from focusing are presented. Certain types of wave focusing are thought to lead to large ocean waves. The efficacy of SPH in modeling wave focusing is critical to further understanding and predicting extreme wave phenomena with SPH.


2016 ◽  
Vol 11 (1) ◽  
pp. 1-39 ◽  
Author(s):  
Hamed Niroumand ◽  
Mohammad Emad Mahmoudi Mehrizi ◽  
Maryam Saaly

Author(s):  
Hongjie Wen ◽  
Bing Ren

A viscous 3D numerical wave basin for high nonlinear waves was developed based on Smoothed Particle Hydrodynamics (SPH) method. The computational accuracy of SPH method is mainly improved by introducing the Corrective Smoothed Particle Hydrodynamics Method (CSPM) and a novel pressure correction scheme. The incident waves are generated from the inflow boundary by prescribing a velocity profile of the flap-type wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the basin. Moreover, the parallelization of the improved 3D SPH scheme has been carried out using a hybrid MPI-OpenMP programming, together with a dynamic load balancing strategy to improve the computational efficiency. The generation and propagation of regular wave and solitary wave have been simulated. Wave forces induced by regular wave acting on a large-diameter circular cylinder and solitary wave passing over a submerged breakwater are also presented to verify the accuracy of SPH model. In addition, several computing cases of different particle resolutions are investigated and a high parallel efficiency is obtained.


2021 ◽  
Vol 945 (1) ◽  
pp. 012009
Author(s):  
Xin Yan Lye ◽  
Akihiko Nakayama ◽  
Zafarullah Nizamani

Abstract Smoothed Particle Hydrodynamics (SPH) method is proposed, as an alternative mesh-free approach to model all components of rainfall, surface runoff, fluid flow and contaminant transport with the representation of contaminant and fluid, as particles. By doing so, contaminant particles can be traced for the motion within runoff or fluid flow, even in the form of minute concentration which is difficult to render in conventional Eulerian grid methods. Weakly compressible SPH (WCSPH) is selected with cubic spline kernel, and the incorporation of Large Eddy Simulation (LES) representing turbulence effect. Various SPH diffusion formulations have been reviewed and selected. The selected SPH formulation for contaminant concentration is validated against analytical diffusion equation with boundary conditions of solid wall or free surface. The validated method is applied to calculate the overland flow and the contaminant transport on a model terrain and a real terrain geometry. The real terrain is a part of the city of Teluk Intan in Perak, Malaysia and is simulated using digital elevation model (DEM) data retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Water Body Dataset (ASTWBD) for ground elevation and channel surface.


Sign in / Sign up

Export Citation Format

Share Document