scholarly journals NUMERICAL MODELING OF A TURBULENT BOTTOM BOUNDARY LAYER UNDER SOLITARY WAVES ON A SMOOTH SURFACE

Author(s):  
Ahmad Sana ◽  
Hitoshi Tanaka

A number of studies on bottom boundary layers under sinusoidal and cnoidal waves were carried out in the past owing to the role of bottom shear stress on coastal sediment movement. In recent years, the bottom boundary layers under long waves have attracted considerable attention due to the occurrence of huge tsunamis and corresponding sediment movement. In the present study two-equation turbulent models proposed by Menter(1994) have been applied to a bottom boundary layer under solitary waves. A comparison has been made for cross-stream velocity profile and other turbulence properties in x-direction.

2010 ◽  
Vol 272 (1-4) ◽  
pp. 209-222 ◽  
Author(s):  
Peter Linke ◽  
Stefan Sommer ◽  
Lorenzo Rovelli ◽  
Daniel F. McGinnis

2013 ◽  
Vol 728 ◽  
pp. 340-361 ◽  
Author(s):  
Pietro Scandura

AbstractThe two-dimensional vortices characterizing the bottom boundary layer of both progressive and solitary waves, recently discovered by experimental flow visualizations and referred to as vortex tubes, are studied by numerical solution of the governing equations. In the case of progressive waves, the Reynolds numbers investigated belong to the subcritical range, according to Floquet linear stability theory. In such a range the periodic generation of strictly two-dimensional vortex structures is not a self-sustaining phenomenon, being the presence of appropriate ambient disturbances necessary to excite certain modes through a receptivity mechanism. In a physical experiment such disturbances may arise from several coexisting sources, among which the most likely is roughness. Therefore, in the present numerical simulations, wall imperfections of small amplitude are introduced as a source of disturbances for both types of wave, but from a macroscopic point of view the wall can be regarded as flat. The simulations show that even wall imperfections of small amplitude may cause flow instability and lead to the appearance of vortex tubes. These vortices, in turn, interact with a vortex layer adjacent to the wall and characterized by vorticity opposite to that of the vortex tubes. In a first stage such interaction gives rise to corrugation of the vortex layer and this affects the spatial distribution of the wall shear stress. In a second stage the vortex layer rolls up and pairs of counter-rotating vortices are generated, which leave the bottom because of the self-induced velocity.


2016 ◽  
Author(s):  
Julia M. Moriarty ◽  
Courtney K. Harris ◽  
Christophe Rabouille ◽  
Katja Fennel ◽  
Marjorie A. M. Friedrichs ◽  
...  

Abstract. Observations indicate that seabed resuspension of organic material and the associated entrainment of porewater into the overlying water can alter biogeochemical fluxes in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; entrainment of this material into the water column via resuspension and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhone Delta, France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a two-month period that included three resuspension events; also, the supply of organic matter, oxygen and nutrients to the water column was held constant in time. Consistent with time-series observations from the Rhone Delta, model results showed that resuspension increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed allowed seabed oxygen consumption to increase, primarily through nitrification. Resuspension of POM into the water column, and the associated increase in remineralization, also increased oxygen consumption in the bottom boundary layer. During these resuspension events, modeled rates of oxygen consumption increased by up to factors of ~ 2 and ~ 8 in the seabed and bottom boundary layer, respectively. When averaged over two months, the intermittent cycles of erosion and deposition led to a 20 % increase of oxygen consumption in the seabed, as well as a larger increase of ~ 200 % in the bottom boundary layer. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhone Subaqueous Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in the bottom boundary layer, only a thin seabed oxic layer, and abundant labile organic matter.


2020 ◽  
Vol 8 (9) ◽  
pp. 700
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Ahmad Sana

The transitional flow regime of the bottom boundary layer under hypothetical shoaling tsunamis is investigated in the entire region from the tsunami source to the shallow sea area. In order to calculate the shoaling process of a tsunami, an analytical method based on Green’s law and the linear long wave theory are employed, and flow regime criteria for the wave boundary layer proposed by one of the authors are applied. It is found that the bottom boundary layer in a tsunami source area is located in the laminar regime. Subsequently, transition occurs to the smooth turbulence during the shoaling process, with a transition from the smooth to the rough turbulent region in the shallow area. For precise evaluation of bottom friction acting on the sea bed and the resulting energy dissipation beneath the tsunami, it is highly necessary to include such transitional behavior in sea bottom boundary layers.


1972 ◽  
Vol 2 (1) ◽  
pp. 54-72 ◽  
Author(s):  
Georges L. Weatherly

This is a report of an experiment designed to study the bottom boundary layer of the Florida Current at a representative site in the Straits of Florida. The objectives of the experiment were 1) to determine the bottom frictional stress τ0, and 2) to determine whether the bottom boundary layer is a turbulent Ekman layer. A typical value of the bottom stress τ0 was found to be ~0.2 dyn cm−2. A mean veering of ~10° in the correct sense was observed in the logarithmic layer. No mean veering was observed above the logarithmic layer; this is believed to be a consequence of the strong modulation of the bottom current by the diurnal tide. The implication of τ0≈0.2 dyn cm−2 is considered in a simplified model of the Gulf Stream current system; this analysis suggests that, dynamically, the role of bottom friction is rather small.


1986 ◽  
Vol 1 (20) ◽  
pp. 110 ◽  
Author(s):  
Y.P. Sheng

This paper presents a modeling approach aimed at solving a complete hierarchy of turbulent bottom boundary layers which are often encountered in practical coastal and oceanographic engineering problems. The practical problem is extremely complex due to the presence and interaction of competing processes. A comprehensive model is thus needed to first provide fundamental understanding of a variety of turbulent bottom boundary layers before any simple model for the complex problem can be meaningfully constructed. This paper presents a comprehensive second-order closure model of turbulent transport and in addition, discusses some applications of the model to wave boundary layer, wave-current boundary layer, sediment-laden boundary layer and two-dimensional boundary layer. Example is provided to show how such a comprehensive model may be used to guide the development of a simple model.


2015 ◽  
Vol 769 ◽  
pp. 635-653 ◽  
Author(s):  
R. W. Dell ◽  
L. J. Pratt

Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.


Abstract Boundary layer turbulence in coastal regions differs from that in deep ocean because of bottom interactions. In this paper, we focus on the merging of surface and bottom boundary layers in a finite-depth coastal ocean by numerically solving the wave-averaged equations using a large eddy simulation method. The ocean fluid is driven by combined effects of wind stress, surface wave, and a steady current in the presence of stable vertical stratification. The resulting flow consists of two overlapping boundary layers, i.e. surface and bottom boundary layers, separated by an interior stratification. The overlapping boundary layers evolve through three phases, i.e. a rapid deepening, an oscillatory equilibrium and a prompt merger, separated by two transitions. Before the merger, internal waves are observed in the stratified layer, and they are excited mainly by Langmuir turbulence in the surface boundary layer. These waves induce a clear modulation on the bottom-generated turbulence, facilitating the interaction between the surface and bottom boundary layers. After the merger, the Langmuir circulations originally confined to the surface layer are found to grow in size and extend down to the sea bottom (even though the surface waves do not feel the bottom), reminiscent of the well-organized Langmuir supercells. These full-depth Langmuir circulations promote the vertical mixing and enhance the bottom shear, leading to a significant enhancement of turbulence levels in the vertical column.


2007 ◽  
Vol 37 (6) ◽  
pp. 1527-1550 ◽  
Author(s):  
L. Luznik ◽  
W. Zhu ◽  
R. Gurka ◽  
J. Katz ◽  
W. A. M. Nimmo Smith ◽  
...  

Abstract Seven sets of 2D particle image velocimetry data obtained in the bottom boundary layer of the coastal ocean along the South Carolina and Georgia coast [at the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) site] are examined, covering the accelerating and decelerating phases of a single tidal cycle at several heights above the seabed. Additional datasets from a previous deployment are also included in the analysis. The mean velocity profiles are logarithmic, and the vertical distribution of Reynolds stresses normalized by the square of the free stream velocity collapse well for data obtained at the same elevation but at different phases of the tidal cycle. The magnitudes of 〈u′u′〉, 〈w′w′〉, and −〈u′w′〉 decrease with height above bottom in the 25–160-cm elevation range and are consistent with the magnitudes and trends observed in laboratory turbulent boundary layers. If a constant stress layer exists, it is located below 25-cm elevation. Two methods for estimating dissipation rate are compared. The first, a direct estimate, is based on the measured in-plane instantaneous velocity gradients. The second method is based on fitting the resolved part of the dissipation spectrum to the universal dissipation spectrum available in Gargett et al. Being undervalued, the direct estimates are a factor of 2–2.5 smaller than the spectrum-based estimates. Taylor microscale Reynolds numbers for the present analysis range from 24 to 665. Anisotropy is present at all resolved scales. At the transition between inertial and dissipation range the longitudinal spectra exhibit a flatter than −5/3 slope and form spectral bumps. Second-order statistics of the velocity gradients show a tendency toward isotropy with increasing Reynolds number. Dissipation exceeds production at all measurement heights, but the difference varies with elevation. Close to the bottom, the production is 40%–70% of the dissipation, but it decreases to 10%–30% for elevations greater than 80 cm.


Sign in / Sign up

Export Citation Format

Share Document