scholarly journals ESTIMATION OF BOUND AND RELEASED INFRAGRAVITY WAVES BASED ON WAVE OBSERVATION AND NUMERICAL SIMULATION IN SHALLOW WATER

Author(s):  
Katsuya Hirayama ◽  
Hiroaki Kashima ◽  
Yoshiyuki Uno

It is mentioned that observed infragravity waves consist of bound waves propagating with short-wave groups, released waves due to reduction of short crest waves and free waves existing in a field. Though it is difficult to distinguish among them, a standard spectrum for infragravity waves is defined by using a relation to a wind wave spectrum. In this study, a comprehensive definition of standard spectrum is newly proposed to estimate infragravity wave heights with the relation between the ratio of wave height and the ursell number of observed wave property, represented by selected data of wave observation in shallow water. Moreover, the release process of bound waves at a harbor entrance is reproduced in numerical simulation using a Boussinesq model for short-wave transformation. These results are verified by comparison to infragravity waves observed at outside/inside of a harbor for a month.

2019 ◽  
Vol 47 (1) ◽  
pp. 38-40
Author(s):  
E.G. Didenkulova ◽  
A.V. Slunyaev ◽  
E.N. Pelinovsky

The dynamics of wave ensembles in shallow water is studied within the framework of the nonlinear dispersive Korteweg – de Vries (KdV) equation by numerical simulation. Bimodal wave systems whose energy is distributed over two spectral domains are considered: the “additional” lobe which corresponds to the system of longer or shorter waves is added to the “main” spectral peak. The concerned problem describes, for example, the interaction between wind waves and swell in shallow water. The case of the unimodal waves (considered in (Pelinovsky, Sergeeva, 2006) is used as the reference. The limitations of the implied assumptions and the relationship of the idealized model to the realistic conditions in the ocean were discussed in the recent paper (Wang et al, 2018). Based on the detailed consideration of the 6 simulated cases, the following general conclusions may be formulated. The transition from the initial state to the quasi-equilibrium one is accompanied by strong variations of the wave characteristics, when the waves exhibit the most extreme features. In particular, the wave kurtosis grows suddenly and the abnormal heavy tails in the wave amplitude probability distributions appear. These processes are observed in all the cases of the bimodal spectra and are quite similar to the single-mode regime. The coexistence of a long-wave system smoothens the rapid oscillations of the wave extremes and kurtosis which take place during the transition stage. The presence of a short-wave system makes the waves on average more symmetric. Skewness attains the minimum value compared to the other cases. The co-existence of shorter waves practically does not change the wave kurtosis or the probability of the wave heights. In contrast, the presence of a long-wave system makes the waves more asymmetric and more extreme. The probability of large waves increases in the bimodal systems with a low-frequency component. The initial wave spectrum expands as a result of the wave interaction and tends to a quasistationary state. One may anticipate that the formulated conclusions are applicable beyond the limits of the Korteweg-de Vries equation to other kindred frameworks and corresponding phenomena. This work was supported by the Russian Science Foundation (project No. 18-77-00063).


Author(s):  
Livio Sebastián Maglione ◽  
Guillermo Muschiatto ◽  
Raúl Alberto DEAN

1994 ◽  
Vol 04 (04) ◽  
pp. 533-556 ◽  
Author(s):  
V. AGOSHKOV ◽  
E. OVCHINNIKOV ◽  
A. QUARTERONI ◽  
F. SALERI

This paper deals with time-advancing schemes for shallow water equations. We review some of the existing numerical approaches, propose new schemes and investigate their stability. We present numerical results obtained using the time-advancing schemes proposed, with finite element and finite difference approximation in space variables.


2022 ◽  
Vol 130 (1) ◽  
pp. 171
Author(s):  
М.В. Смирнов ◽  
Н.В. Сидоров ◽  
М.Н. Палатников

A brief review of the features of the defect structure and studies of the luminescent properties of nonlinear optical lithium niobate crystals of various compositions and genesis was given. It was established that the electron-hole pair NbNb4+-O- in the oxygen-octahedral cluster NbO6 emitted in the short-wavelength region of the visible spectrum (400-500 nm), while point defects (VLi and NbNb4+-NbLi4+ bipolarons) - in the long-wavelength region (500-620 nm). At the ratio of Li/Nb≈1 the luminescence was extinguished in the visible region of the spectrum due to decreasing the intrinsic luminescence centers. It was shown that the presence of polaron luminescence in the near-IR region (700-1050 nm) was due to the small polarons NbLi4+ and impurity ions Cr3+ localized in lithium and niobium octahedra. The energy transfer between the luminescence centers in the visible and near-IR spectral regions was detected. Moreover, luminescence in near-IR regions was dominant. Doping of LiNbO3 crystals with zinc and magnesium at ZnO<4.46 mol.% and MgO<5.29 mol.% led to decreasing luminescence of intrinsic defects (VLi, NbNb4+-NbLi4+). However, there was an increase of the contribution of the short-wave spectrum component at higher dopant concentrations because of the introduction of Zn and Mg into the origin positions of Nb ions.


Sign in / Sign up

Export Citation Format

Share Document