short wavelength region
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 130 (1) ◽  
pp. 171
Author(s):  
М.В. Смирнов ◽  
Н.В. Сидоров ◽  
М.Н. Палатников

A brief review of the features of the defect structure and studies of the luminescent properties of nonlinear optical lithium niobate crystals of various compositions and genesis was given. It was established that the electron-hole pair NbNb4+-O- in the oxygen-octahedral cluster NbO6 emitted in the short-wavelength region of the visible spectrum (400-500 nm), while point defects (VLi and NbNb4+-NbLi4+ bipolarons) - in the long-wavelength region (500-620 nm). At the ratio of Li/Nb≈1 the luminescence was extinguished in the visible region of the spectrum due to decreasing the intrinsic luminescence centers. It was shown that the presence of polaron luminescence in the near-IR region (700-1050 nm) was due to the small polarons NbLi4+ and impurity ions Cr3+ localized in lithium and niobium octahedra. The energy transfer between the luminescence centers in the visible and near-IR spectral regions was detected. Moreover, luminescence in near-IR regions was dominant. Doping of LiNbO3 crystals with zinc and magnesium at ZnO<4.46 mol.% and MgO<5.29 mol.% led to decreasing luminescence of intrinsic defects (VLi, NbNb4+-NbLi4+). However, there was an increase of the contribution of the short-wave spectrum component at higher dopant concentrations because of the introduction of Zn and Mg into the origin positions of Nb ions.


2021 ◽  
Vol 66 (10) ◽  
pp. 885
Author(s):  
M. Pop ◽  
M. Kranjčec ◽  
I. Studenyak

The (Ga0.3In0.7)2Se3 films deposited by the thermal evaporation technique are annealed in the inert atmosphere (argon) for 1 h at temperatures of 50, 100, and 150 ∘C. The spectral ellipsometry is applied for measuring the spectral dependences of the refractive and extinction coefficients of as-deposited and annealed (Ga0.3In0.7)2Se3 films. The optical transmission spectra, as well as the optical absorption spectra of (Ga0.3In0.7)2Se3 films, are studied depending on the annealing temperature. The optical absorption edge for annealed (Ga0.3In0.7)2Se3 films is shifted to the short-wavelength region and broadens, as the annealing temperature increases. Parameters of the Urbach absorption edge are determined for as-deposited and annealed (Ga0.3In0.7)2Se3 films. The spectral dependences of the refractive index are analyzed in the framework of the Wemple–DiDomenico model. The nonlinear increase of the energy pseudogap, Urbach energy, and refractive index with the annealing temperature are revealed.


2021 ◽  
Vol 103 (3) ◽  
pp. 93-100
Author(s):  
А.К. Aimukhanov ◽  
◽  
X.S. X.S. Rozhkova ◽  
А.К. Zeinidenov ◽  
Т.E. Seisembekova ◽  
...  

This paper presents the results of a study of the effect of modification of the structure of the PEDOT: PSS polymer with hole conductivity on the optical and electrophysical properties of an organic solar cell. It was found that the modification of a polymer film with ethyl and isopropyl alcohols leads to a change in the morphology and roughness of the film surface. It has been determined that annealing of films in alcohol vapor promotes the formation of more uniform films. It is shown that upon modification of the PEDOT: PSS film in alcohol vapor the absorption spectrum shifts the absorption maximum of PEDOT to the short-wavelength region of the spectrum, the absorption of the aromatic PSS fragment decrease. X-ray phase analysis showed that after surface modification with alcohol vapor, the PEDOT and PSS chains change their structure. It is shown that the structural features of the surface morphology of PEDOT: PSS affect the electrophysical parameters of the films, such as the effective extraction rate and the effective time of flight of charge carriers. It was found that the modification of the surface of the PEDOT: PSS film leads to an improvement in the electrical transport properties of the films.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4106
Author(s):  
Jeong Eun Park ◽  
Chang-Soon Han ◽  
Won Seok Choi ◽  
Donggun Lim

In order to analyze the effects of various sizes of pyramid structure on solar cell characteristics, a pyramid structure was formed on the wafer through various etching processes. In this paper, etching was performed using one-step etching processes such as alkaline solution etching, reactive ion etching (RIE), and metal-assisted chemical etching (MACE), and two-step etching processes such as alkaline solution + MACE and alkaline solution + RIE. The micro-sized pyramid-structured wafers formed using the alkali solution showed higher reflectivity than nano-sized pyramid-structured wafers. Accordingly, it was expected that the characteristics of the cells fabricated with a nano-sized pyramid-structured wafer having low reflectivity would be higher than that of a micro-sized pyramid-structured wafer. However, it was confirmed that the quantum efficiency characteristics in the short wavelength region were higher in the micro-sized pyramid-structured wafers than in the nano-sized pyramid-structured wafers. To confirm the reason for this, surface characteristics were analyzed through the deposition of an emitter layer on a wafer formed in a pyramidal structure. As a result, in the case of the nano-sized pyramid-structured wafer, the sheet resistance characteristics were lower due to the increased depth of the emitter layer in comparison to the micro-sized pyramid-structured wafer. Accordingly, it was determined that the quantum efficiency was degraded as a result of the high recombination rate.


Author(s):  
A.Ch. Matiyev ◽  
R.T. Uspazhiev

Based on the performed studies, it was found that tensile deformation along the [1] crystallographic axis of TlInSe2 crystals shifts the energy of indirect transitions to the short-wavelength region, and the compression deformation, on the contrary, to the long-wavelength region.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Susobhan Das ◽  
Yadong Wang ◽  
Yunyun Dai ◽  
Shisheng Li ◽  
Zhipei Sun

AbstractThe light–matter interaction in materials is of remarkable interest for various photonic and optoelectronic applications, which is intrinsically determined by the bandgap of the materials involved. To extend the applications beyond the bandgap limit, it is of great significance to study the light–matter interaction below the material bandgap. Here, we report the ultrafast transient absorption of monolayer molybdenum disulfide in its sub-bandgap region from ~0.86 µm to 1.4 µm. Even though this spectral range is below the bandgap, we observe a significant absorbance enhancement up to ~4.2% in the monolayer molybdenum disulfide (comparable to its absorption within the bandgap region) due to pump-induced absorption by the excited carrier states. The different rise times of the transient absorption at different wavelengths indicate the various contributions of the different carrier states (i.e., real carrier states in the short-wavelength region of ~<1 µm, and exciton states in the long wavelength region of ~>1 µm). Our results elucidate the fundamental understanding regarding the optical properties, excited carrier states, and carrier dynamics in the technologically important near-infrared region, which potentially leads to various photonic and optoelectronic applications (e.g., excited-state-based photodetectors and modulators) of two-dimensional materials and their heterostructures beyond their intrinsic bandgap limitations.


Sign in / Sign up

Export Citation Format

Share Document