scholarly journals ANALYTICAL SOLUTION OF BEACH PROFILE RESPONSE TO SEA LEVEL RISE - APPLICATION FOR TECTONIC MOVEMENT IN SENDAI, JAPAN

Author(s):  
Nquyen Xuan Tinh ◽  
Hitoshi Tanaka ◽  
Magnus Larson

Kriebel and Dean (1993) developed a simple approach to quantify the beach profile response to a time-varying sea level. It is based on the equilibrium concept implying that if a beach profile is exposed to a constant wave and water level climate it will attain a specific shape ( i.e., the equilibrium beach profile; EBP). A change in the forcing conditions will make the profile move towards a new equilibrium state, which will be attained if these conditions prevail sufficiently long. For the case of typical sea level rise (SLR), the change in the forcing conditions is slow enough so that the profile has time to adjust towards the EBP at any given time. In this study, new analytical solutions are developed based on the convolution method to describe beach­ profile response to sea water level change.

2021 ◽  
Vol 206 ◽  
pp. 103639
Author(s):  
Sean E. Feist ◽  
Mohammad A. Hoque ◽  
Md. A. Islam ◽  
Kazi M. Ahmed ◽  
Mike Fowler

2019 ◽  
Vol 66 (255) ◽  
pp. 113-123 ◽  
Author(s):  
Eef van Dongen ◽  
Guillaume Jouvet ◽  
Andrea Walter ◽  
Joe Todd ◽  
Thomas Zwinger ◽  
...  

AbstractRetreat of calving glaciers worldwide has contributed substantially to sea-level rise in recent decades. Mass loss by calving contributes significantly to the uncertainty of sea-level rise projections. At Bowdoin Glacier, Northwest Greenland, most calving occurs by a few large events resulting from kilometre-scale fractures forming parallel to the calving front. High-resolution terrestrial radar interferometry data of such an event reveal that crevasse opening is fastest at low tide and accelerates during the final 36 h before calving. Using the ice flow model Elmer/Ice, we identify the crevasse water level as a key driver of modelled opening rates. Sea water-level variations in the range of local tidal amplitude (1 m) can reproduce observed opening rate fluctuations, provided crevasse water level is at least 4 m above the low-tide sea level. The accelerated opening rates within the final 36 h before calving can be modelled by additional meltwater input into the crevasse, enhanced ice cliff undercutting by submarine melt, ice damage increase due to tidal cyclic fatigue, crevasse deepening or a combination of these processes. Our results highlight the influence of surface meltwater and tides on crevasse opening leading to major calving events at grounded tidewater glaciers such as Bowdoin.


2019 ◽  
Vol 62 (4) ◽  
pp. 373-388 ◽  
Author(s):  
Anya Krywy-Janzen ◽  
Eduard Reinhardt ◽  
Chelsi McNeill-Jewer ◽  
Aaron Coutino ◽  
Brenda Waltham ◽  
...  

2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2018 ◽  
Vol 136 ◽  
pp. 172-182 ◽  
Author(s):  
T. Beuzen ◽  
I.L. Turner ◽  
C.E. Blenkinsopp ◽  
A. Atkinson ◽  
F. Flocard ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 604-613
Author(s):  
Tai Ho Choo ◽  
Gwan Seon Yun ◽  
Yong Been Kwon ◽  
Si Hyung Ahn ◽  
Jong Gu Kim

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Ground Water ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Adrian D. Werner ◽  
Craig T. Simmons

2018 ◽  
Vol 54 ◽  
pp. 00023 ◽  
Author(s):  
Dawid Potrykus ◽  
Anna Gumuła-Kawęcka ◽  
Beata Jaworska-Szulc ◽  
Małgorzata Pruszkowska-Caceres ◽  
Adam Szymkiewicz ◽  
...  

In this research, GALDIT method was used to assess seawater intrusion in the coastal aquifer of the inner Puck Bay (Southern Baltic Sea). The impact of potential sea-level rise on groundwater vulnerability for years 2081-2100 was also considered. The study area was categorized into three classes of vulnerability: low, moderate and high. The most vulnerable area is the Hel Peninsula with northern part of the Kashubian Coastland. Increased class of aquifer vulnerability is also adopted to glacial valleys. The results of this research revealed that about 18.9% of the analyzed area is highly vulnerable to seawater intrusion, 25.3% is moderately vulnerable and 55.8% is potentially at low risk. The simulated scenario of predicted sea level rise shows enlargement of high vulnerability areas.


Sign in / Sign up

Export Citation Format

Share Document