scholarly journals Effect of Additional Shear Strain Layer on Tensile Strength and Ductility of Finely Drawn Wire

2006 ◽  
Vol 47 (549) ◽  
pp. 953-957 ◽  
Author(s):  
Satoshi KAJINO ◽  
Motoo ASAKAWA
2007 ◽  
Vol 340-341 ◽  
pp. 525-530 ◽  
Author(s):  
Satoshi Kajino ◽  
Motoo Asakawa

The mechanical and electrical applications of fine wires (D = 0.1 mm) has become more widely spread. In general, it is well known that fine drawn wires have high tensile strength while maintaining ductility. It has been determined that a hardened layer of around 0.04 mm in depth, referred to as the “additional shear strain layer,” is generated beneath the surface layer of the wire, and this additional shear strain layer affected the tensile strength of the fine wire. As an origin of this phenomenon, it was ascertained that the microstructure of surface layer was finer than that of center layer. The purpose of this paper is to investigate the effect of die angle on the microstructure and the tensile strength of the additional shear strain layer. The tensile test was performed as the surface layer was thinned by electro-polishing, and the crystal orientation and the crystal grain were measured via EBSD. As a result, it was ascertained that die angle affected the tensile strength and crystal grain refinement of the additional shear stray layer.


2000 ◽  
Vol 2000.8 (0) ◽  
pp. 369-370
Author(s):  
Hiroyuki MIZUNO ◽  
Kentaroh YAMAGUTI ◽  
Ikuo OCHIAI. ◽  
Motoh ASAKAWA

2007 ◽  
Vol 2007.15 (0) ◽  
pp. 225-226
Author(s):  
Satoshi KAJINO ◽  
Motoo ASAKAWA ◽  
Kazuki HOSODA ◽  
Yasuhiro MAEDA

2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


2017 ◽  
Vol 123 ◽  
pp. 285-294 ◽  
Author(s):  
Dongyue Li ◽  
Chengxin Li ◽  
Tao Feng ◽  
Yidong Zhang ◽  
Gang Sha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document