scholarly journals Failure Mechanisms of a Rainfall-induced Landslide using a Full-scale Flume Test

2019 ◽  
Vol 19 (7) ◽  
pp. 383-392
Author(s):  
Kwangwoo Lee ◽  
Jaewook Suk ◽  
Hyosub Kang ◽  
Hyunki Kim
Landslides ◽  
2020 ◽  
Author(s):  
Kwangwoo Lee ◽  
Jaewook Suk ◽  
Hyunki Kim ◽  
Sangseom Jeong
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Michael R. Motley ◽  
Yin L. Young

The load dependent deformation responses and complex failure mechanisms of self-adaptive composite propeller blades make the design, analysis, and scaling of these structures nontrivial. The objective of this work is to investigate and verify the dynamic similarity relationships for the hydroelastic response and potential failure mechanisms of self-adaptive composite marine propellers. A fully coupled, three-dimensional boundary element method-finite element method is used to compare the model and full-scale responses of a self-adaptive composite propeller. The effects of spatially varying inflow, transient sheet cavitation, and load-dependent blade deformation are considered. Three types of scaling are discussed: Reynolds scale, Froude scale, and Mach scale. The results show that Mach scaling, which requires the model inflow speed to be the same as the full scale, will lead to discrepancies in the spatial load distributions at low speeds due to differences in Froude number, but the differences between model and full-scale results become negligible at high speeds. Thus, Mach scaling is recommended for a composite marine propeller because it allows the same material and layering scheme to be used between the model and the full scale, leading to similar 3D stress distributions, and hence similar failure mechanisms, between the model and the full scale.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Author(s):  
Robert C. Cieslinski ◽  
H. Craig Silvis ◽  
Daniel J. Murray

An understanding of the mechanical behavior polymers in the ductile-brittle transition region will result in materials with improved properties. A technique has been developed that allows the realtime observation of dynamic plane stress failure mechanisms in the transmission electron microscope. With the addition of a cryo-tensile stage, this technique has been extented to -173°C, allowing the observation of deformation during the ductile-brittle transition.The technique makes use of an annealed copper cartridge in which a thin section of bulk polymer specimen is bonded and plastically deformed in tension in the TEM using a screw-driven tensile stage. In contrast to previous deformation studies on solvent-cast films, this technique can examine the frozen-in morphology of a molded part.The deformation behavior of polypropylene and polypropylene impact modified with EPDM (ethylene-propylene diene modified) and PE (polyethylene) rubbers were investigated as function of temperature and the molecular weight of the impact modifier.


2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


Author(s):  
J. W. van de Lindt ◽  
S. Pei ◽  
Steve Pryor ◽  
Hidemaru Shimizu ◽  
Izumi Nakamura
Keyword(s):  

CONCREEP 10 ◽  
2015 ◽  
Author(s):  
Tomiyuki Kaneko ◽  
Keiichi Imamoto ◽  
Chizuru Kiyohara ◽  
Akio Tanaka ◽  
Ayuko Ishikawa

Sign in / Sign up

Export Citation Format

Share Document