scholarly journals Method of Seismic Capacity Analysis of Steel Structure in Nuclear Power Plant

2021 ◽  
Vol 21 (2) ◽  
pp. 111-117
Author(s):  
Dongwon Lee ◽  
Namheoyng Lim

A steel structure in a nuclear power plant is typically constructed next to major safety-related structures. Accordingly, the structural integrity of the steel structure must be achieved until the safety-related building is damaged by external forces. Consequently, the steel structure should have seismic capacity while maintaining the structural integrity of the surrounding safety-related structure. An optimized method for the seismic capacity against the beyond design earthquake was developed to reflect this capacity concept.

Author(s):  
J. C. Kim ◽  
J. B. Choi ◽  
Y. H. Choi

Since early 1950’s fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet has been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an integrity evaluation system on the basis of cooperative virtual reality environment for reactor pressure vessel which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and knowledge based programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet. The proposed system is expected to provide a more efficient integrity evaluation for reactor pressure vessel.


2021 ◽  
Author(s):  
Hoseon Choi ◽  
Seung Gyu Hyun

<p>According to strict criteria step by step for site selection, design, construction and operation, the seismic safety of nuclear power plant (NPP) sites in South Korea are secured by considering design basis earthquake (DBE) level capable of withstanding the maximum ground motions that can occur on the site. Therefore, it is intended to summarize DBE level and its evaluation details for NPP sites in several countries.</p><p>Similar but different terms are used for DBE from country to country, i.e. safe shutdown earthquake (SSE), design earthquake (DE), SL2, Ss, and maximum calculated earthquake (MCE). They may differ when applied to actual seismic design process, and only refer to approximate comparisons. This script used DBE as a representative term, and DBE level was based on horizontal values.</p><p>The DBE level of NPP sites depends on seismic activity of the area. Japan and Western United States, where earthquakes occur more frequently than South Korea, have high DBE values. The DBE level of NPP sites in South Korea has been confirmed to be similar or higher compared to that of Central and Eastern Unites Sates and Europe, which have similar seismic activity.</p>


Author(s):  
Se-Kwon Jung ◽  
Adam Goodman ◽  
Joe Harrold ◽  
Nawar Alchaar

This paper presents a three-tier, critical section selection methodology that is used to identify critical sections for the U.S. EPR™ Standard Nuclear Power Plant (NPP). The critical section selection methodology includes three complementary approaches: qualitative, quantitative, and supplementary. These three approaches are applied to Seismic Category I structures in a complementary fashion to identify the most critical portions of the building whose structural integrity needs to be maintained for postulated design basis events and conditions. Once the design of critical sections for a particular Seismic Category I structure is complete, the design for that structure is essentially complete for safety evaluation purposes. Critical sections, taken as a whole, are analytically representative of an “essentially complete” U.S. EPR™ design; their structural design adequacy provides reasonable assurance of overall U.S. EPR™ structural design adequacy.


1993 ◽  
Vol 55 (1) ◽  
pp. 3-59 ◽  
Author(s):  
K. Törrönen ◽  
P. Aaltonen ◽  
H. Hänninen ◽  
K. Mäkelä ◽  
P. Karjalainen-Roikonen ◽  
...  

Author(s):  
T. Jelfs ◽  
M. Hayashi ◽  
A. Toft

Gross failure of certain components in nuclear power plant has the potential to lead to intolerable radiological consequences. For these components, UK regulatory expectations require that the probability of gross failure must be shown to be so low that it can be discounted, i.e. that it is incredible. For prospective vendors of nuclear power plant in the UK, with established designs, the demonstration of “incredibility of failure” can be an onerous requirement carrying a high burden of proof. Requesting parties may need to commit to supplementary manufacturing inspection, augmented material testing requirements, enhanced defect tolerance assessment, enhanced material specifications or even changes to design and manufacturing processes. A key part of this demonstration is the presentation of the structural integrity safety case argument. UK practice is to develop a safety case that incorporates the notion of ‘conceptual defence-in-depth’ to demonstrate the highest structural reliability. In support of recent Generic Design Assessment (GDA) submissions, significant experience has been gained in the development of so called “incredibility of failure” arguments. This paper presents an overview of some of the lessons learned relating to the identification of the highest reliability components, the development of the structural integrity safety arguments in the context of current GDA projects, and considers how the UK Technical Advisory Group on Structural Integrity (TAGSI) recommendations continue to be applied almost 15 years after their work was first published. The paper also reports the approach adopted by Horizon Nuclear Power and their partners to develop the structural integrity safety case in support of the GDA process to build the UK’s first commercial Boiling Water Reactor design.


Author(s):  
Yan Li ◽  
Daogang Lu ◽  
Zhigang Wang ◽  
Jian Wu ◽  
Fengyun Yu

Thermal stratification phenomena in piping systems of nuclear power plant would threaten the structural integrity of pipes, which are caused by the significant change of water density with temperature. To provide temperature gradients for the stress analysis of Normal heat Removal System (RNS) suction line of a Gen-III nuclear power plant, the relevant thermal stratification phenomena are analyzed by CFD in this paper. Cases without leakage (normal power operation) and with leakage are both studied. The results show that the first portion of pipe (one meter or so) near the hot leg is isothermal for normal power operation due to the penetrating flow. In the remaining portion, the radial temperature drops are of the order of 20∼27 K for no leakage case. For the leakage case, the radial temperature drops are 23 K or less, which are relatively smaller than those for the no leakage case due to the net hot flow from the hot leg to the valve.


Author(s):  
Zhou Gengyu ◽  
Liang Shuhua ◽  
Sun Lin ◽  
Lv Feng

The main steam super pipe used in nuclear power plant is an important safety class2 component. There are several nozzles located on it and linked with main steam safety valves. In the past two decades, the hot extrusion forming technology has been widely used to manufacture the super pipe nozzles. Comparing with traditional insert weldolet, the wall thickness of the extruded nozzle is relative small, and the nozzle inner radius is hard to control precisely in the fabrication process. Due to high temperature working condition and complicated loading conditions, the load capacity of the super pipe extruded nozzle has become an issue of concern for manufacturers and users. This paper presents a structural integrity assessment of a super pipe extruded nozzle. The nozzle stresses due to internal pressure and external loads for different operating conditions are obtained by the three-dimensional finite element analysis. The extruded nozzle is evaluated against the RCCM code Subsection C3200 Service Levels O, B and D stress limits for design, upset and faulted conditions. A parametric sensitivity analysis of the extruded nozzle inner radius size is also carried out. In addition, in order to reduce the calculation effort, an efficient calculation method is developed by using the commercial finite element program ANSYS.


2016 ◽  
Vol 853 ◽  
pp. 346-350
Author(s):  
Lin Wei Ma ◽  
Jia Sheng He ◽  
An Qing Shu ◽  
Xiao Tao Zheng ◽  
Yan Wang

Primary water stress corrosion cracking (PWSCC) has been observed in CRDM nozzles, BMI nozzles and other penetration nozzles. The industry has used the repair method of replacement of nozzles fabricated of Alloy 690. After the replacement of the nozzle, the structural integrity analysis of new nozzle and welds should be performed to ensure the pressure boundary compliance with the original design requirement. In this paper, the pressurizer top head instrument nozzle of PWR nuclear power plant is evaluated as a typical pressure vessel penetration nozzle. The results showed that the repaired nozzle satisfies the ASME Code design requirement and the crack growth of the postulated flaw in 40 years of the nuclear plant life is acceptable.PWSCC degradation mechanism has been observed in CRDM nozzles, BMI nozzles and other penetration nozzles [1]. In some nuclear power plants built in China earlier, such as DAYABAY nuclear power plant and QINSHAN nuclear power plant, PWSCC degradation mechanism has been found in CRDM nozzle welds which manufactured of Alloy 600 and welded of Alloy 82/182[2]. The repair of the degraded nozzles is the popular choice for the nuclear power plant owners. After the replacement of the nozzle, the structural integrity analysis of new nozzle and welds should be performed to ensure the pressure boundary compliance with the original design requirement. In this paper, the pressurizer top head nozzle of PWR nuclear power plant is evaluated as a typical pressure vessel penetration nozzle. Stress intensities were conservatively determined for pressure and applicable thermal transients and compared to the allowable values of the ASME Code, Section III. Thermal stress of the transients was obtained from 3D finite element model (FEM). Residual stress of J-groove weld was obtained from 2D FEM analysis and used for fracture mechanics analysis. All of the analysis showed that the repaired nozzle satisfies the ASME Code design requirement and the crack growth of the postulated flaw in 40 years of the nuclear plant life is acceptable.


Sign in / Sign up

Export Citation Format

Share Document