anhysteretic magnetization
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Hu Xiangyi ◽  
Bu Yang ◽  
Zhang Jianhua

Abstract As seen in the Jiles-Atherton (J-A) model and its modified form, the linear relationship between the magnetization coefficient and the stress deviates significantly from the experimental results. It is required to introduce many parameters that are difficult to obtain or unknown to describe the effect of elastoplastic deformation on magnetization or hysteresis, such as shape coefficient, pinning coefficient, and molecular field coefficient. In this paper, a new nonlinear magneto-elastoplastic model for ferromagnetic materials is established based on the magneto-mechanical coupling effect, and both the sixth-order term of magnetization and the nonlinear equation of the magnetization coefficient are introduced into the magnetostriction equation. In the models established in this paper, the elastoplastic deformation equivalent magnetic field is introduced into the effective magnetic field, and the Frohlich-Kennelly equation is used to describe the anhysteretic magnetization. After comparing the prediction results of different models with the available experimental results, it is observed that the proposed model in this paper exhibits superior prediction ability for magnetostrictive strain, magnetization, and hysteresis phenomena under different stresses. This paper has also analyzed the mechanism of the effect of elasto-plastic loading and residual plastic deformation on the hysteresis in different models as well as the differences between them. The determination coefficient of the proposed model in this paper is closer to 1 that is better than the existing models, indicating that it has a better fitting effect and is of great significance to the development of quantitative nondestructive testing technology.


2020 ◽  
Vol 91 (2) ◽  
pp. 20901
Author(s):  
Xiao Xiao ◽  
Fabian Müller ◽  
Gregor Bavendiek ◽  
Kay Hameyer

The design of electrical machines and magnetic actuators requires accurate models to represent hysteresis effects in ferromagnetic materials. The magnetic nonlinearity of the iron core is usually considered by an anhysteretic magnetization curve. With this assumption, hysteresis’ effects in the field computation are completely neglected. This paper presents a comparative study of different hysteresis models, particularly Pragmatic Algebraic Model (PAM) and vector stop model, with regard to a vector anhysteretic anisotropic model. The PAM turns out to be an efficient model implemented with one mathematical equation. The multi cells stop model relies on a consistent thermodynamic formulation, whose dissipation corresponds to a dry friction-like element. Both models implement a constitutive relationship, in which the magnetic flux density vector as independent input and magnetic field strength as output. With a rotational single sheet tester (RSST), various tests for a sample of material FeSi24-50A (FeSi) with a silicon proportion of 2.4 wt% can be proceeded under the application of relevant field distribution. The obtained measured data are applied to parameterize and validate the models. Following numerical experiments the results are compared with those obtained by means of an anhysteretic anisotropic model.


2020 ◽  
Vol 137 (5) ◽  
pp. 889-891
Author(s):  
D. Olekšáková ◽  
P. Kollár ◽  
M. Jakubčin ◽  
P. Slovenský ◽  
Z. Birčáková ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1549 ◽  
Author(s):  
Michał Nowicki ◽  
Roman Szewczyk ◽  
Paweł Nowak

The anhysteretic magnetization curve is the key element of modeling magnetic hysteresis loops. Despite the fact that it is intensively exploited, known models of anhysteretic curve have not been verified experimentally. This paper presents the validation of four anhysteretic curve models considering four different materials, including isotropic, such as Mn-Zn soft ferrite, as well as anisotropic amorphous and nanocrystalline alloys. The presented results indicate that only the model that considers anisotropic energy is valid for a wide set of modern magnetic materials. The most suitable of the verified models is the anisotropic extension function-based model, which considers uniaxial anisotropy.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2021 ◽  
Author(s):  
Michał Nowicki

This article is concerned with the methods for experimentally determining the Anhysteretic Magnetization curve for soft magnetic materials. A new method based on the modern hysteresisgraph system is presented. Known modern and traditional methods based on fluxmeters are presented as well. The experimental results obtained with the described methods for isotropic Mn–Zn ferrite are compared. Lastly, results of validation on NANOPERM® nanocrystalline material are detailed and show negligible hysteresis. The new method allows for accurate Anhysteretic Magnetization curve measurement without software or hardware modifications of standard, commercially available hysteresisgraph systems. The speed and accuracy of the results are improved in comparison with other methods.


Author(s):  
Brijesh Upadhaya ◽  
Floran Martin ◽  
Paavo Rasilo ◽  
Paul Handgruber ◽  
Anouar Belahcen ◽  
...  

Purpose Non-oriented electrical steel presents anisotropic behaviour. Modelling such anisotropic behaviour has become a necessity for accurate design of electrical machines. The main aim of this study is to model the magnetic anisotropy in the non-oriented electrical steel sheet of grade M400-50A using a phenomenological hysteresis model. Design/methodology/approach The well-known phenomenological vector Jiles–Atherton hysteresis model is modified to correctly model the typical anisotropic behaviour of the non-oriented electrical steel sheet, which is not described correctly by the original vector Jiles–Atherton model. The modification to the vector model is implemented through the anhysteretic magnetization. Instead of the commonly used classical Langevin function, the authors introduced 2D bi-cubic spline to represent the anhysteretic magnetization for modelling the magnetic anisotropy. Findings The proposed model is found to yield good agreement with the measurement data. Comparisons are done between the original vector model and the proposed model. Another comparison is also made between the results obtained considering two different modifications to the anhysteretic magnetization. Originality/value The paper presents an original method to model the anhysteretic magnetization based on projections of the anhysteretic magnetization in the principal axis, and apply such modification to the vector Jiles–Atherton model to account for the magnetic anisotropy. The replacement of the classical Langevin function with the spline resulted in better fitting. The proposed model could be used in the numerical analysis of magnetic field in an electrical application.


Sign in / Sign up

Export Citation Format

Share Document