scholarly journals Lattice resolution of vibrational modes in the electron microscope

2021 ◽  
Vol 220 ◽  
pp. 113162
Author(s):  
Peter Rez ◽  
Arunima Singh
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Peter Rez ◽  
Toshihiro Aoki ◽  
Katia March ◽  
Dvir Gur ◽  
Ondrej L. Krivanek ◽  
...  

Abstract Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.


Author(s):  
Tsutomu Komoda

Electron microscope images of crystal lattices have been observed by many authors since the first achievement by Menter in 1956. During these years, the optimum operating conditions with electron microscopes have been investigated for the high resolution lattice imaging. Finally minute lattice spacings around 1 Å have been resolved by several authors by using contemporary instruments. The major lattice planes with low index in crystals are almost within a range of spacing capable to be resolved by electron microscopy (1-3 Å). Therefore, the observing techniques are now essential for practical studies in the area of crystallography as well as metal physics.Although the point to point resolution of the electron microscope is restricted due to the spherical aberration of the objective lens in addition to the diffraction, the lattice resolution is mainly limited due to the chromatic aberration under the normal illumination.


2000 ◽  
Vol 6 (S2) ◽  
pp. 200-201
Author(s):  
Y. Bando ◽  
M. Mitome ◽  
Y. Kitami ◽  
K. Kurashima ◽  
T. Kaneyama ◽  
...  

It has been already pointed out that the medium voltage microscopes of 300kV to 400kV have some advantages in the analytical capabilities of EDS and EELS as compared to those of 200kV). The P/B ratios and the spatial resolution for the analysis will be improved with the increase of the accelerating voltages as well as lattice resolution. In order to improve the spatial resolution of inelastic filtered images, we have recently developed a new 300 kV omega-filter electron microscope with a field emission gun. In the paper, some characteristic features of the new microscope and its application results are described.The new microscope have a 300kV field emission gun, an omega-filter, EDS, digital STEM, a slow-scan CCD, an imaging plate and TV camera. Some characteristic features of the new microscope are summarized in Table 1. Based on a calculation of probe diameter as a function of probe current at 300kV in a Shottkey type gun with a brightness of 7xl08A/cm2sr and Cs of 0.6mm, a minimum probe size (FWHM) is estimated to be about 0.2nm (Fig. 1).


2001 ◽  
Vol 7 (S2) ◽  
pp. 918-919
Author(s):  
Akira Tonomura

We developed a 1-MV field-emission transmission electron microscope to help in further improving electron holography, Lorentz microscopy, and high-resolution electron microscopy. This microscope is characterized by an electron beam having the highest brightness ever, 2×1010 A/cm2, and by the highest lattice-resolution below 0.5 Å. These two features were attained by minimizing the mechanical vibration of the whole column and by improving the stability of both the electron beam and the high voltage. If the tiny electron source located at the top of the 7-m-high microscope moves by as little as a fraction of the source size, 50 Å in diameter relative to the column, due to mechanical vibration or beam deflection by the AC magnetic fields, the beam brightness will be greatly degraded. If the ripples ΔE of the high-voltage E exceed ΔE/E = 5 × 10−7 /min, then the inherent monochromatic feature of the beam is deteriorated by the increase in energy spread.Through the preliminary experiments testing the vibration and magnetic shielding of the acceleration tube as well as the high stability of the high voltage, and through the numerical simulations on the vibration modes of the whole column, we were led to the conclusion that the microscope must be separated into three parts that are connected by cables.


Author(s):  
K. C. Tsou ◽  
J. Morris ◽  
P. Shawaluk ◽  
B. Stuck ◽  
E. Beatrice

While much is known regarding the effect of lasers on the retina, little study has been done on the effect of lasers on cornea, because of the limitation of the size of the material. Using a combination of electron microscope and several newly developed cytochemical methods, the effect of laser can now be studied on eye for the purpose of correlating functional and morphological damage. The present paper illustrates such study with CO2 laser on Rhesus monkey.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
J. N. Meador ◽  
C. N. Sun ◽  
H. J. White

The electron microscope is being utilized more and more in clinical laboratories for pathologic diagnosis. One of the major problems in the utilization of the electron microscope for diagnostic purposes is the time element involved. Recent experimentation with rapid embedding has shown that this long phase of the process can be greatly shortened. In rush cases the making of projection slides can be eliminated by taking dark field electron micrographs which show up as a positive ready for use. The major limiting factor for use of dark field micrographs is resolution. However, for conference purposes electron micrographs are usually taken at 2.500X to 8.000X. At these low magnifications the resolution obtained is quite acceptable.


Author(s):  
Mitsuo Ohtsuki ◽  
Michael Sogard

Structural investigations of biological macromolecules commonly employ CTEM with negative staining techniques. Difficulties in valid image interpretation arise, however, due to problems such as variability in thickness and degree of penetration of the staining agent, noise from the supporting film, and artifacts from defocus phase contrast effects. In order to determine the effects of these variables on biological structure, as seen by the electron microscope, negative stained macromolecules of high density lipoprotein-3 (HDL3) from human serum were analyzed with both CTEM and STEM, and results were then compared with CTEM micrographs of freeze-etched HDL3. In addition, we altered the structure of this molecule by digesting away its phospholipid component with phospholipase A2 and look for consistent changes in structure.


Author(s):  
Linda M. Stannard ◽  
Margaret Lennon

Burnupena cincta and Fusus verruculatus are two whelks which inhabit the intertidal zones of the Cape Peninsula shore. Their respiratory pigments, or haemocyanins, are morphologically similar in structure (Figs. 1 and 2) and appear in the electron microscope as short cylindrical rods about 34 nm in diameter and 36 nm high. Viewed side-on the molecules show regular banding suggesting a structure composed of six equidistant rings of sub-units. Occasionally the particles have the appearance of possessing a central “belt” in the position of the 3rd and 4th rows of sub-units. End-on views of the haemocyanin molecules show a circular contour with a dense outer ring and a less dense inner ring in which 10 definite sub-units may frequently be distinguished. A number of molecules display an extra central inner component which appears either as a diffuse plug or as a discrete ring-shaped core ± 8 nm in diameter.


Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


Sign in / Sign up

Export Citation Format

Share Document