biosphere model
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 38)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 18 (24) ◽  
pp. 6547-6565
Author(s):  
Linda M. J. Kooijmans ◽  
Ara Cho ◽  
Jin Ma ◽  
Aleya Kaushik ◽  
Katherine D. Haynes ◽  
...  

Abstract. The uptake of carbonyl sulfide (COS) by terrestrial plants is linked to photosynthetic uptake of CO2 as these gases partly share the same uptake pathway. Applying COS as a photosynthesis tracer in models requires an accurate representation of biosphere COS fluxes, but these models have not been extensively evaluated against field observations of COS fluxes. In this paper, the COS flux as simulated by the Simple Biosphere Model, version 4 (SiB4), is updated with the latest mechanistic insights and evaluated with site observations from different biomes: one evergreen needleleaf forest, two deciduous broadleaf forests, three grasslands, and two crop fields spread over Europe and North America. We improved SiB4 in several ways to improve its representation of COS. To account for the effect of atmospheric COS mole fractions on COS biosphere uptake, we replaced the fixed atmospheric COS mole fraction boundary condition originally used in SiB4 with spatially and temporally varying COS mole fraction fields. Seasonal amplitudes of COS mole fractions are ∼50–200 ppt at the investigated sites with a minimum mole fraction in the late growing season. Incorporating seasonal variability into the model reduces COS uptake rates in the late growing season, allowing better agreement with observations. We also replaced the empirical soil COS uptake model in SiB4 with a mechanistic model that represents both uptake and production of COS in soils, which improves the match with observations over agricultural fields and fertilized grassland soils. The improved version of SiB4 was capable of simulating the diurnal and seasonal variation in COS fluxes in the boreal, temperate, and Mediterranean region. Nonetheless, the daytime vegetation COS flux is underestimated on average by 8±27 %, albeit with large variability across sites. On a global scale, our model modifications decreased the modeled COS terrestrial biosphere sink from 922 Gg S yr−1 in the original SiB4 to 753 Gg S yr−1 in the updated version. The largest decrease in fluxes was driven by lower atmospheric COS mole fractions over regions with high productivity, which highlights the importance of accounting for variations in atmospheric COS mole fractions. The change to a different soil model, on the other hand, had a relatively small effect on the global biosphere COS sink. The secondary role of the modeled soil component in the global COS budget supports the use of COS as a global photosynthesis tracer. A more accurate representation of COS uptake in SiB4 should allow for improved application of atmospheric COS as a tracer of local- to global-scale terrestrial photosynthesis.


Author(s):  
Erik Joseph Lester Larson ◽  
Luke Schiferl ◽  
Roisin Commane ◽  
J William Munger ◽  
Anna T Trugman ◽  
...  

Abstract An estimated 1700 Pg of carbon is frozen in the Arctic permafrost and the fate of this carbon is unclear because of the complex interaction of biophysical, ecological and biogeochemical processes that govern the Arctic carbon budget. Two key processes determining the region’s long-term carbon budget are: (i) carbon uptake through increased plant growth, and (ii) carbon release through increased heterotrophic respiration due to warmer soils. Previous predictions for how these two opposing carbon fluxes may change in the future have varied greatly, indicating that improved understanding of these processes and their feedbacks is critical for advancing our predictive ability for the fate of Arctic peatlands. In this study, we implement and analyze a vertically-resolved model of peatland soil carbon into a cohort-based terrestrial biosphere model to improve our understanding of how on-going changes in climate are altering the Arctic carbon budget. A key feature of the formulation is that accumulation of peat within the soil column modifies its texture, hydraulic conductivity, and thermal conductivity, which, in turn influences resulting rates of heterotrophic respiration within the soil column. Analysis of the model at three eddy covariance tower sites in the Alaskan tundra shows that the vertically-resolved soil column formulation accurately captures the zero-curtain phenomenon, in which the temperature of soil layers remain at or near 0 °C during fall freezeback due to the release of latent heat, is critical to capturing observed patterns of wintertime respiration. We find that significant declines in net ecosystem productivity (NEP) occur starting in 2013 and that these declines are driven by increased heterotrophic respiration arising from increased precipitation and warming. Sensitivity analyses indicate that the cumulative NEP over the decade responds strongly to the estimated soil carbon stock and more weakly to vegetation abundance at the beginning of the simulation.


2021 ◽  
Author(s):  
Linda M. J. Kooijmans ◽  
Ara Cho ◽  
Jin Ma ◽  
Aleya Kaushik ◽  
Katherine D. Haynes ◽  
...  

Abstract. The uptake of carbonyl sulfide (COS) by terrestrial plants is linked to photosynthetic uptake of CO2 by a shared diffusion pathway. Applying COS as a photosynthesis tracer in models requires an accurate representation of biosphere COS fluxes, but these models have not been extensively evaluated against field observations of COS fluxes. In this paper, the COS flux as simulated by the Simple Biosphere Model, version 4 (SiB4) is updated with the latest mechanistic insights and evaluated with site observations from different biomes: one evergreen needleleaf forest, two deciduous broadleaf forests, three grasslands, and two crop fields spread over Europe and North America. To account for the effect of atmospheric COS mole fractions on COS biosphere uptake, we replaced the fixed COS mole fraction originally used in SiB4 with spatially and temporally varying COS mole fraction fields. The lower COS mole fractions in the late growing season reduces COS uptake rates in agreement with observations. We also replaced the empirical soil COS uptake model in SiB4 with a mechanistic model that represents both uptake and production of COS in soils, which improves the match with observations over agricultural fields and fertilized grassland soils. SiB4 was capable of simulating the diurnal and seasonal variation of COS fluxes in the boreal, temperate and Mediterranean region. The daytime vegetation COS flux is on average 8 ± 27 % underestimated, albeit with large variability across sites. On a global scale, our model modifications caused a drop in the COS biosphere sink from 922 Gg S yr−1 in the original SiB4 model to 753 Gg S yr−1 in the updated version. The largest drop in fluxes was driven by lower atmospheric COS mole fractions over regions with high productivity, which highlights the importance of accounting for variations in atmospheric COS mole fractions. The change to a different soil model, on the other hand, had a relatively small effect on the global biosphere COS sink. The small role of the modeled soil component in the COS budget supports the use of COS as a global photosynthesis tracer.


2021 ◽  
Author(s):  
Linda M. J. Kooijmans ◽  
Ara Cho ◽  
Jin Ma ◽  
Aleya Kaushik ◽  
Katherine D. Haynes ◽  
...  

2021 ◽  
Author(s):  
Yan Yang ◽  
A. Anthony Bloom ◽  
Shuang Ma ◽  
Paul Levine ◽  
Alexander Norton ◽  
...  

Abstract. Land-atmosphere carbon and water exchanges have large uncertainty in land surface and biosphere models. Using observations to reduce land biosphere model structural and parametric errors is a key priority for both understanding and accurately predicting carbon and water fluxes. Recent implementations of the Bayesian CARDAMOM model-data fusion framework have yielded key insights into ecosystem carbon and water cycling. CARDAMOM analyses—informed by co-located C and H2O flux observations—have exhibited considerable skill in both representing the variability of assimilated observations and predicting withheld observations. While CARDAMOM model configurations (namely CARDAMOM-compatible biogeochemical model structures) have been continuously developed to accommodate new scientific challenges and an expanding variety of observational constraints, there has so far been no concerted effort to globally and systematically validate CARDAMOM performance across individual model-data fusion configurations. Here we use the FLUXNET-2015 dataset—an ensemble of 200+ eddy covariance flux tower sites—to formulate a concerted benchmarking framework for CARDAMOM carbon (GPP, NEE) and water (ET) flux estimates (CARDAMOM-FLUXVal version 1.0). We present a concise set of skill metrics to evaluate CARDAMOM performance against both assimilated and withheld FLUXNET-2015 GPP, NEE and ET data. We further demonstrate the potential for tailored CARDAMOM evaluations by categorizing performance in terms of (i) individual land cover types, (ii) monthly, annual and mean fluxes, and (iii) length of assimilation data. The CARDAMOM benchmarking system—along with CARDAMOM driver files provided—can be readily repeated to support both the intercomparison between existing CARDAMOM model configurations and the formulation, development and testing of new CARDAMOM model structures.


2021 ◽  
Author(s):  
Sinan Li ◽  
Li Zhang ◽  
Jingfeng Xiao ◽  
Rui Ma ◽  
Xiangjun Tian ◽  
...  

Abstract. Reliable modeling of carbon and water fluxes is essential for understanding the terrestrial carbon and water cycles and informing policy strategies aimed at constraining carbon emissions and improving water use efficiency. We used an assimilation framework (LPJ-Vegetation and soil moisture Joint Assimilation, or LPJ-VSJA) to improve gross primary production (GPP) and evapotranspiration (ET) estimates globally. The terrestrial biosphere model that we used is the integrated model – LPJ-PM coupled from the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and a hydrology module (i.e., the updated Priestley–Taylor Jet Propulsion Laboratory model, PT-JPLSM). Satellite-based soil moisture products derived from the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) and leaf area index (LAI) from the global Land and Ground satellite (GLASS) product were assimilated into LPJ-PM to improve GPP and ET simulations using a Proper Orthogonal Decomposition-based ensemble four-dimensional variational assimilation method (PODEn4DVar). The joint assimilation framework LPJ-VSJA achieved the best model performance (with an R2 of 0.91 and 0.81 and an RMSD reduced by 50.4 % and 38.4 % for GPP and ET, respectively, compared with those of LPJ-DGVM at the monthly scale). The assimilated GPP and ET demonstrated a better performance in the arid and semiarid regions (GPP: R2 = 0.73, ubRMSD = 1.05 g C m−2 d−1; ET: R2 = 0.73, ubRMSD =  0.61 mm d−1) than in the humid and sub-dry humid regions (GPP: R2 = 0.61, ubRMSD = 1.23 g C m−2 d−1; ET: R2 = 0.66; ubRMSD = 0.67 mm d−1). The ET simulated by LPJ-PM that assimilated SMAP or SMOS had a slight difference, and the ET that assimilated SMAP soil moisture data was more improved than that assimilated SMOS data. Our global simulation modeled by LPJ-VSJA was compared with several global GPP and ET products (e.g., GLASS GPP, GOSIF GPP, GLDAS ET, GLEAM ET) using the triple collocation (TC) method. Our products, especially ET, exhibited advantages in the overall error distribution (estimated error (μ): 3.4 mm month−1; estimated standard deviation of μ: 1.91 mm month−1). Our research showed that the assimilation of multiple datasets could reduce model uncertainties, while the model performance differed across regions and plant functional types. Our assimilation framework (LPJ-VSJA) can improve the model simulation performance of daily GPP and ET globally, especially in water-limited regions.


Sign in / Sign up

Export Citation Format

Share Document