scholarly journals Planar Light Extinction Measurement of Soot Volume Fraction in Laminar Counterflow Diffusion Flames

2021 ◽  
Vol 7 ◽  
Author(s):  
Jiwei Zhou ◽  
Mengxiang Zhou ◽  
Liuhao Ma ◽  
Yu Wang

A cost-effective and straightforward light extinction method has been extensively used for measurement of soot volume fraction (SVF) in sooting flames. The traditional pointwise measurement with translation stage suffers from relatively time-consuming operation and low spatial resolution. In the current study, the planar light extinction method is processed by utilizing a CMOS camera to image the combustion field of counterflow diffusion flame (CDF) backlit with the lamp. Collimated and diffuse optical layouts were adopted to explore the feasibility. Investigations of beam-steering effects are presented and discussed through a combination of computational fluid dynamics (CFD) and ray tracing simulations. Measured SVF are compared to the well-validated laser-induced incandescence (LII) measurements. Current measurements show that the diffuse optical layout is feasible and robust to provide accurate and more efficient measurement of the SVF in CDF with superior spatial resolution (21.65 μm).

Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0°–360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5995
Author(s):  
Qianqian Mu ◽  
Fuwu Yan ◽  
Jizhou Zhang ◽  
Lei Xu ◽  
Yu Wang

Furanic biofuels have received increasing research interest over recent years, due to their potential in reducing greenhouse gas emissions and mitigating the production of harmful pollutants. Nevertheless, the heterocyclic structure in furans make them readily to produce soot, which requires an in-depth understanding. In this study, the sooting characteristic of several typical furanic biofuels, i.e., furan, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF), were investigated in laminar counterflow flames. Combined laser-based soot measurements with numerical analysis were performed. Special focus was put on understanding how the fuel structure of furans could affect soot formation. The results show that furan has the lowest soot volume fraction, followed by DMF, while MF has the largest value. Kinetic analyses revealed that the decomposition of MF produces high amounts of C3 species, which are efficient benzene precursors. This may be the reason for the enhanced formation of polycyclic aromatic hydrocarbons (PAHs) and soot in MF flames, as compared to DMF and furan flames. The major objectives of this work are to: (1) understand the sooting behavior of furanic fuels in counterflow flames, (2) elucidate the fuel structure effects of furans on soot formation, and (3) provide database of quantitative soot concentration for model validation and refinements.


2003 ◽  
Author(s):  
H. Sapmaz ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure the soot volume fraction for steady and unsteady laminar ethylene diffusion flames. For the steady flame the soot profiles obtained in this study using LII showed good agreement with those obtained previously using scattering/extinction technique. For the unsteady or flickering flames, we generated very repeatable time-varying diffusion flames by forcing the fuel flow at frequencies between 1–10 Hz. Phase lock images of the soot volume fractions were obtained for different phases between 0° and 360°. The sequential images showed the dynamics of the interactions between the generated vortices in the fuel and the flame. The phase-locked soot images revealed the entire motion process of the soot field during each pulsation period. The results obtained in the course of this study show that the soot emission decreased by lowering the oscillation frequency of the flame.


Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0° - 360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2021 ◽  
Author(s):  
Amit Makhija ◽  
Krishna Sesha Giri

Abstract Soot volume fraction predictions through simulations carried out on OpenFOAM® are reported in diffusion flames with ethylene fuel. A single-step global reaction mechanism for gas-phase species with an infinitely fast chemistry assumption is employed. Traditionally soot formation includes inception, nucleation, agglomeration, growth, and oxidation processes, and the individual rates are solved to determine soot levels. However, in the present work, the detailed model is replaced with the soot formation and oxidation rates, defined as analytical functions of mixture fraction and temperature, where the net soot formation rate can be defined as the sum of individual soot formation and oxidation rates. The soot formation/oxidation rates are modelled as surface area-independent processes. The flame is modelled by solving conservation equations for continuity, momentum, total energy, and species mass fractions. Additionally, separate conservation equations are solved to compute the mixture fraction and soot mass fraction consisting of source terms that are identical and account for the mixture fraction consumption/production due to soot. As a consequence, computational time can be reduced drastically. This is a quantitative approach that gives the principal soot formation regions depending on the combination of local mixture fraction and temperature. The implemented model is based on the smoke point height, an empirical method to predict the sooting propensity based on fuel stoichiometry. The model predicts better soot volume fraction in buoyant diffusion flames. It was also observed that the optimal fuel constants to evaluate soot formation rates for different fuels change with fuel stoichiometry. However, soot oxidation strictly occurs in a particular region in the flame; hence, they are independent of fuel. The numerical results are compared with the experimental measurements, showing an excellent agreement for the velocity and temperature. Qualitative agreements are observed for the soot volume fraction predictions. A close agreement was obtained in smoke point prediction for the overventilated flame. An established theory through simulations was also observed, which states that the amount of soot production is proportional to the fuel flow rate. Further validations underscore the predictive capabilities. Model improvements are also reported with better predictions of soot volume fractions through modifications to the model constants based on mixture fraction range.


2021 ◽  
Author(s):  
Nemanja Ceranic

Soot models have been investigated for several decades and many fundamental models exist that prescribe soot formation in agreement with experiments and theories. However, due to the complex nature of soot formation, not all pathways have been fully characterized. This work has numerically studied the influence that aliphatic based inception models have on soot formation for coflow laminar diffusion flames. CoFlame is the in-house parallelized FORTRAN code that was used to conduct this research. It solves the combustion fluid dynamic conservation equations for a variety of coflow laminar diffusion flames. New soot inception models have been developed for specific aliphatics in conjunction with polycyclic aromatic hydrocarbon based inception. The purpose of these models was not to be completely fundamental in nature, but more so a proof-of-concept in that an aliphatic based mechanism could account for soot formation deficiencies that exist with just PAH based inception. The aliphatic based inception models show potential to enhance predicative capability by increasing the prediction of the soot volume fraction along the centerline without degrading the prediction along the pathline of maximum soot. Additionally, the surface reactivity that was used to achieve these results lied closer in the range of numerically derived optimal values as compared to the surface reactivity that was needed to match peak soot concentrations without the aliphatic based inception models.


2016 ◽  
Vol 24 (26) ◽  
pp. 29547 ◽  
Author(s):  
Terrence R. Meyer ◽  
Benjamin R. Halls ◽  
Naibo Jiang ◽  
Mikhail N. Slipchenko ◽  
Sukesh Roy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document