scholarly journals Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development

2021 ◽  
Vol 8 ◽  
Author(s):  
Vadim Maratovich Gadelshin ◽  
Roberto Formento Cavaier ◽  
Ferid Haddad ◽  
Reinhard Heinke ◽  
Thierry Stora ◽  
...  

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd atoms, which is a typical target material for Tb generation, was considered, showing the necessity of radiochemical purification procedures before mass separation. Nevertheless, a 10-fold enhancement of the Tb ion beam using laser resonance ionization was observed even with Gd:Tb atomic ratio of 100:1.

2019 ◽  
Vol 107 (7) ◽  
pp. 653-661 ◽  
Author(s):  
Vadim Maratovich Gadelshin ◽  
Reinhard Heinke ◽  
Tom Kieck ◽  
Tobias Kron ◽  
Pascal Naubereit ◽  
...  

Abstract The development of a highly efficient resonance ionization scheme for lutetium is presented. A laser ion source, based on the all-solid-state Titanium:sapphire laser system, was used at the 30 keV RISIKO off-line mass separator to characterize different possible optical excitation schemes in respect to their ionization efficiency. The developed laser resonance ionization scheme can be directly applied to the use at radioactive ion beam facilities, e. g. at the CERN-MEDICIS facility, for large-scale production of medical radioisotopes.


2019 ◽  
Vol 55 (10) ◽  
Author(s):  
K. Chrysalidis ◽  
J. Ballof ◽  
Ch. E. Düllmann ◽  
V. N. Fedosseev ◽  
C. Granados ◽  
...  

Abstract. The production of selenium ion beams has been investigated at the CERN-ISOLDE facility via two different ionization methods. Whilst molecular selenium (SeCO) beams were produced at ISOLDE since the early 1990s, recent attempts at reliably reproducing these results have so far been unsuccessful. Here we report on tests of a step-wise resonance laser ionization scheme for atomic selenium using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). For stable selenium an ionization efficiency of 1% was achieved. During the first on-line radioisotope production tests, a yield of $ \approx 2.4 \times 10^4$≈2.4×104 ions/μC was measured for 71Se+, using a ZrO2 target with an electron impact ion source. In parallel, an approach for extraction of molecular carbonyl selenide (SeCO) beams was tested. The same ion source and target material were used and a maximum yield of $ \approx 3.6\times 10^5$≈3.6×105 ions/μ C of 71SeCO+ was measured.


1999 ◽  
Vol 54 (13) ◽  
pp. 1793-1799 ◽  
Author(s):  
A.A Podshivalov ◽  
O.I Matveev ◽  
B.W Smith ◽  
J.D Winefordner

2021 ◽  
Vol 8 ◽  
Author(s):  
Reinhard Heinke ◽  
Eric Chevallay ◽  
Katerina Chrysalidis ◽  
Thomas E. Cocolios ◽  
Charlotte Duchemin ◽  
...  

Thulium-167 is a promising radionuclide for nuclear medicine applications with potential use for both diagnosis and therapy (“theragnostics”) in disseminated tumor cells and small metastases, due to suitable gamma-line as well as conversion/Auger electron energies. However, adequate delivery methods are yet to be developed and accompanying radiobiological effects to be investigated, demanding the availability of 167Tm in appropriate activities and quality. We report herein on the production of radionuclidically pure 167Tm from proton-irradiated natural erbium oxide targets at a cyclotron and subsequent ion beam mass separation at the CERN-MEDICIS facility, with a particular focus on the process efficiency. Development of the mass separation process with studies on stable 169Tm yielded 65 and 60% for pure and erbium-excess samples. An enhancement factor of thulium ion beam over that of erbium of up to several 104 was shown by utilizing laser resonance ionization and exploiting differences in their vapor pressures. Three 167Tm samples produced at the IP2 irradiation station, receiving 22.8 MeV protons from Injector II at Paul Scherrer Institute (PSI), were mass separated with collected radionuclide efficiencies between 11 and 20%. Ion beam sputtering from the collection foils was identified as a limiting factor. In-situ gamma-measurements showed that up to 45% separation efficiency could be fully collected if these limits are overcome. Comparative analyses show possible neighboring mass suppression factors of more than 1,000, and overall 167Tm/Er purity increase in the same range. Both the actual achieved collection and separation efficiencies present the highest values for the mass separation of external radionuclide sources at MEDICIS to date.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2864
Author(s):  
Eva Kröll ◽  
Miriana Vadalà ◽  
Juliana Schell ◽  
Simon Stegemann ◽  
Jochen Ballof ◽  
...  

Highly porous yttrium oxide is fabricated as ion beam target material in order to produce radioactive ion beams via the Isotope Separation On Line (ISOL) method. Freeze casting allows the formation of an aligned pore structure in these target materials to improve the isotope release. Aqueous suspensions containing a solid loading of 10, 15, and 20 vol% were solidified with a unidirectional freeze-casting setup. The pore size and pore structure of the yttrium oxide freeze-casts are highly affected by the amount of solid loading. The porosity ranges from 72 to 84% and the crosslinking between the aligned channels increases with increasing solid loading. Thermal aging of the final target materials shows that an operation temperature of 1400 °C for 96 h has no significant effect on the microstructure. Thermo-mechanical calculation results, based on a FLUKA simulation, are compared to measured compressive strength and forecast the mechanical integrity of the target materials during operation. Even though they were developed for the particular purpose of the production of short-lived radioactive isotopes, the yttria freeze-cast scaffolds can serve multiple other purposes, such as catalyst support frameworks or high-temperature fume filters.


Nature ◽  
2016 ◽  
Vol 538 (7626) ◽  
pp. 495-498 ◽  
Author(s):  
Mustapha Laatiaoui ◽  
Werner Lauth ◽  
Hartmut Backe ◽  
Michael Block ◽  
Dieter Ackermann ◽  
...  

2001 ◽  
Vol 15 (28n29) ◽  
pp. 1355-1360 ◽  
Author(s):  
UDAY LANKE ◽  
ANNETTE KOO ◽  
SIMON GRANVILLE ◽  
JOE TRODAHL ◽  
ANDREAS MARKWITZ ◽  
...  

Amorphous GaN films were deposited on various substrates viz. Si (100), quartz, glass, Al, stainless steel and glassy carbon by thermal evaporation of gallium in the presence of energetic nitrogen ions from a Kaufman source. The films were deposited at room temperature and 5 × 10-4 mbar nitrogen partial pressure. The effect of a low energy nitrogen ion beam during the synthesis of films was investigated for energies 40 eV and 90 eV. The N:Ga atomic ratio, bonding state, microstructure, surface morphology, and electrical properties of the deposited a-GaN films were studied by different characterisation techniques. The films are found to be X-ray amorphous in nature, which is confirmed by Raman spectroscopy. Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) indicate the N:Ga atomic ratio in the films. The 400-750 eV energy range is thought to be optimal for the production of single-phase amorphous GaN . The effect of ion-energy on optical, Raman, and electrical conductivity measurements of the films is also presented.


Sign in / Sign up

Export Citation Format

Share Document