ceratina calcarata
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Jesse L. Huisken ◽  
Wyatt A. Shell ◽  
Hannah K. Pare ◽  
Sandra M. Rehan

HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1980-1986
Author(s):  
Nicolas C. Strange ◽  
John K. Moulton ◽  
Ernest C. Bernard ◽  
William E. Klingeman ◽  
Blair J. Sampson ◽  
...  

Helianthus verticillatus Small (whorled sunflower) is a federally endangered plant species found only in the southeastern United States that has potential horticultural value. Evidence suggests that H. verticillatus is self-incompatible and reliant on insect pollination for seed production. However, the identity of probable pollinators is unknown. Floral visitors were collected and identified during Sept. 2017 and Sept. 2018. Thirty-six species of visitors, including 25 hymenopterans, 7 dipterans, 2 lepidopterans, and 2 other insect species, were captured during 7 collection days at a site in Georgia (1 day) and 2 locations in Tennessee (6 days). Within a collection day (0745–1815 hr), there were either five or six discrete half-hour collection periods when insects were captured. Insect visitor activity peaked during the 1145–1215 and 1345–1415 hr periods, and activity was least during the 0745–0845 and 0945–1015 hr periods at all three locations. Visitors were identified by genus and/or species with morphological keys and sequences of the cox-1 mitochondrial gene. The most frequent visitors at all sites were Bombus spp. (bumblebees); Ceratina calcarata (a small carpenter bee species) and members of the halictid bee tribe Augochlorini were the second and third most common visitors at the two Tennessee locations. Helianthus pollen on visitors was identified by microscopic observations and via direct polymerase chain reaction of DNA using Helianthus-specific microsatellites primers. Pollen grains were collected from the most frequent visitors and Apis mellifera (honeybee) and counted using a hemocytometer. Based on the frequency of the insects collected across the three sites and on the mean number of pollen grains carried on the body of the insects, Bombus spp., Halictus ligatus (sweat bee), Agapostemon spp., and Lasioglossum/Dialictus spp., collectively, are the most probable primary pollinators of H. verticillatus.


2020 ◽  
Vol 152 (6) ◽  
pp. 772-782
Author(s):  
Miriam H. Richards ◽  
Andrea Cardama Garate ◽  
Mary Shehata ◽  
Derrick Groom ◽  
Glenn J. Tattersall ◽  
...  

AbstractSmall carpenter bees (Ceratina calcarata Robertson) (Hymenoptera: Apidae) build their nests in both sunny and shady sites, so maternal decisions about nest sites influence the thermal environment experienced by juveniles throughout development. A previous study demonstrated that when larvae and pupae were raised in the laboratory at room temperature, those from sunny nests developed more slowly than those from shady nests. This suggested that bees developing in sunny nests slowed their metabolism or that bees developing in shady nests increased their metabolism. To test this hypothesis, we performed a field experiment in which bees nested in full sun, full shade, or semi-shade. We brought larvae and pupae into the laboratory to be raised to adulthood at room temperature and measured their metabolic rates (VCO2) at 10 °C, 25 °C, and 40 °C. As expected, bees had higher VCO2 at higher test temperatures, but significant interaction also occurred between test temperature and field treatment, such that bees from sunny nests exhibited higher metabolic rates at 40 °C. Because small carpenter bees frequently nest in full sun, adaptation to high nest temperatures may involve activation of thermal protection mechanisms at the cost of slower development.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Rebecca M. Dew ◽  
Quinn S. McFrederick ◽  
Sandra M. Rehan

Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment.


Apidologie ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 90-99 ◽  
Author(s):  
Chelsea N. Cook ◽  
Sarah P. Lawson ◽  
Colin S. Brent ◽  
Sandra M. Rehan

2016 ◽  
Vol 8 (5) ◽  
pp. 1401-1410 ◽  
Author(s):  
Sandra M. Rehan ◽  
Karl M. Glastad ◽  
Sarah P. Lawson ◽  
Brendan G. Hunt

Sign in / Sign up

Export Citation Format

Share Document