dynamic evaluation
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 163)

H-INDEX

28
(FIVE YEARS 7)

2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 19-29
Author(s):  
Yuliia Tatarinova ◽  
Olga Sinelnikova

One of the key processes in software development and information security management is the evaluation of vulnerability risks. Analysis and evaluation of vulnerabilities are considered a resource-intensive process that requires high qualifications and a lot of technical information. The main opportunities and drawbacks of existing systems for evaluation of vulnerability risks in software, which include the lack of consideration of the impact of trends and the degree of popularity of vulnerability on the final evaluation, were analyzed. During the study, the following information was analyzed in the structured form: the vector of the general system of vulnerability evaluation, the threat type, the attack vector, the existence of the original code with patches, exploitation programs, and trends. The obtained result made it possible to determine the main independent characteristics, the existence of a correlation between the parameters, the order, and schemes of the relationships between the basic magnitudes that affect the final value of evaluation of vulnerability impact on a system. A dataset with formalized characteristics, as well as expert evaluation for further construction of a mathematical model, was generated. Analysis of various approaches and methods for machine learning for construction of a target model of dynamic risk evaluation was carried out: neuro-fuzzy logic, regression analysis algorithms, neuro-network modeling. A mathematical model of dynamic evaluation of vulnerability risk in software, based on the dynamics of spreading information about a vulnerability in open sources and a multidimensional model with an accuracy of 88.9 %, was developed. Using the obtained model makes it possible to reduce the analysis time from several hours to several minutes and to make a more effective decision regarding the establishment of the order of patch prioritization, to unify the actions of experts, to reduce the cost of managing information security risks


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiangyu Ge ◽  
Ying Jin ◽  
Qing Li ◽  
Xiaofang Yao ◽  
Shican Liu

Intellectual property pledge financing is effective in alleviating the financing problems of scientific and technological enterprises to a certain extent. However, compared with traditional loans, intellectual property pledge financing is at greater risk with an eye to the particularity of intellectual property pledges. Therefore, it is very important to evaluate the risk of intellectual property pledge financing. This article first outlines the information entropy method, functionalizing indicator data and weight data, and applies the combination of the weight function and indicator function in dynamic evaluation function, to get the final evaluation result. Second, taking four high-tech listed companies on the growth enterprises market (GEM) as example, an evaluation indicator system has been constructed with 16 relevant financial indicators from 2015 to 2019. Then, based on the dynamic function method, we can construct the evaluation function to describe the change trend of the financial indicators of enterprises with a comparison of the advantages and disadvantages of the financial indicators of enterprises. Finally, this article has made a comprehensively comparative analysis on the dynamic evaluation, and the financial risk of intellectual property pledge financing of high-tech enterprises has been done with the combination of the dynamic evaluation curve with the optimal time weight determined by the maximum entropy method.


Author(s):  
Xiaopeng Li ◽  
Dongyang Shang ◽  
Fanjie Li ◽  
Renzhen Chen

A power line inspection robot has to overcome many kinds of obstacles in inspection processes. The strain clamp is the obstacles difficult for inspection robots to overcome. The inspection robot needs to have a particular climbing ability to overcome the strain clamp. Therefore, the ability to climb power lines is the key point of the inspection robot’s design. An inspection robot with retractable double serial manipulators is proposed to improve the climbing and obstacle-crossing ability. Besides, this paper shows that the inspection robot is more suitable for climbing from static analysis and dynamic evaluation index. Firstly, the obstacle-crossing processes and structures of the inspection robot are introduced. Next, the static analysis is carried out when inspection robot climbs the power lines. The static analysis shows that the new inspection robot has a smaller driving torque. What’s more, the dynamic model of the inspection robot is established by Lagrange’s dynamical equations. By constructing the dynamic evaluation indexes, the inspection robot with retractable arms performs better dynamic characteristics. Finally, a prototype robot is carried out to cross obstacles and climb up power lines. The results show that the inspection robot can overcome different obstacles and has a good climbing performance.


Sign in / Sign up

Export Citation Format

Share Document