scholarly journals Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability

2021 ◽  
Vol 12 ◽  
Author(s):  
Olawale Israel Omomowo ◽  
Olubukola Oluranti Babalola

Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.

Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 27
Author(s):  
Ana Méndez ◽  
Carlos A. Nogueira ◽  
Ana Paula Paiva

Considering economics and environmental sustainability, recycling of critical metals from end-of-life devices should be a priority. In this work the hydrometallurgical treatment of a spent automotive catalytic converter (SACC) using HCl with CaCl2 as a leaching medium, and solvent extraction (SX) with a thiodiglycolamide derivative, is reported. The aim was to develop a leaching scheme allowing high Pt recoveries and minimizing Al dissolution, facilitating the application of SX. The replacement of part of HCl by CaCl2 in the leaching step is viable, without compromising Pt recovery (in the range 75–85%), as found for the mixture 2 M CaCl2 + 8 M HCl when compared to 11.6 M HCl. All leaching media showed good potential to recover Ce, particularly for higher reaction times and temperatures. Regarding SX, results achieved with a model solution were promising, but SX for Pt separation from the real SACC solution did not work as expected. For the adopted experimental conditions, the tested thiodiglycolamide derivative in toluene revealed a very good loading performance for both Pt and Fe, but Fe removal and Pt stripping from the organic phases after contact with the SACC solution were not successfully accomplished. Hence, the reutilization of the organic solvent needs improvement.


2021 ◽  
Vol 13 (13) ◽  
pp. 7182
Author(s):  
Emilio Abad-Segura ◽  
Ana Batlles-delaFuente ◽  
Mariana-Daniela González-Zamar ◽  
Luis Jesús Belmonte-Ureña

The joint application of bioeconomy (BE) and circular economy (CE) promotes the sustainable use of natural resources, since by applying a systemic approach, it improves the efficiency of these resources and reduces the impact on the environment. Both strategies, which belong to the area of green economy, provide a global and integrated approach towards environmental sustainability, as regards the extraction of biological materials, the protection of biodiversity and even the primary function of food production in agriculture. The objective was to analyze the implications for sustainability of BE and CE joint application. A systematic and bibliometric review has been applied to a sample of 1961 articles, selected from the period 2004–May 2021. A quantitative and qualitative advance is observed in this field of study. The expansion of scientific production is due to its multidisciplinary nature, since it implies technical, environmental and economic knowledge. The main contribution of this study is to understand the state of research on the implications for sustainability that BE and CE have when combined, in relation to their evolution, the scientific collaboration between the main driving agents, and the identification of the main lines of research developed.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 298
Author(s):  
Fekremariam Asargew Mihretie ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Mitsuru Tsubo ◽  
...  

Teff is an important crop for smallholder farmers in Ethiopia. Improved crop management practices are needed to increase teff productivity and decrease production costs. Here, we used a split–split plot design to evaluate the impacts of different tillage, sowing, and soil compaction practices, and their combinations, on agronomic performance, weed population, lodging, and cost in teff production at the Aba Gerima watershed in northwestern Ethiopia in 2018–2020. Reduced tillage (RT) improved soil moisture, resulting in increased agronomic performance and decreased production costs compared with conventional tillage (CT); however, the weed population was substantially larger with RT than with CT. Row planting (RP) reduced seed cost and lodging but increased sowing and weeding costs compared with broadcast planting (BP). Plant population and leaf area index were substantially greater with BP than with RP during early-stage growth, but this reversed during late-stage growth. Despite labor costs being significantly greater with (WC) compaction than without (NC), little to no differences were observed in the weed population or in agronomic performance. Partial cost–benefit analysis revealed that RT–RP–WC followed by RT–RP–NC was the most economical treatment combination, suggesting that RT–RP–NC could be a labor-effective means of increasing teff production by smallholder farms in Ethiopia.


2018 ◽  
Vol 10 (4) ◽  
pp. 925 ◽  
Author(s):  
Jan Erisman ◽  
Allison Leach ◽  
Albert Bleeker ◽  
Brooke Atwell ◽  
Lia Cattaneo ◽  
...  

Reducing nitrogen pollution across the food chain requires the use of clear and comprehensive indicators to track and manage losses. The challenge is to derive an easy-to-use robust nitrogen use efficiency (NUE) indicator for entire food systems to help support policy development, monitor progress and inform consumers. Based on a comparison of four approaches to NUE (life cycle analysis, nitrogen footprint, nitrogen budget, and environmental impact assessment), we propose an indicator for broader application at the national scale: The whole food chain (NUEFC), which is defined as the ratio of the protein (expressed as nitrogen) available for human consumption to the (newly fixed and imported) nitrogen input to the food system. The NUEFC was calculated for a set of European countries between 1980 and 2011. A large variation in NUEFC was observed within countries in Europe, ranging from 10% in Ireland to 40% in Italy in 2008. The NUEFC can be used to identify factors that influence it (e.g., the share of biological nitrogen fixation (BNF) in new nitrogen, the imported and exported products and the consumption), which can be used to propose potential improvements on the national scale.


2015 ◽  
Vol 18 (13) ◽  
pp. 2498-2508 ◽  
Author(s):  
Sarah W James ◽  
Sharon Friel

AbstractObjectiveTo determine key points of intervention in urban food systems to improve the climate resilience, equity and healthfulness of the whole system.DesignThe paper brings together evidence from a 3-year, Australia-based mixed-methods research project focused on climate change adaptation, cities, food systems and health. In an integrated analysis of the three research domains – encompassing the production, distribution and consumption sectors of the food chain – the paper examines the efficacy of various food subsystems (industrial, alternative commercial and civic) in achieving climate resilience and good nutrition.SettingGreater Western Sydney, Australia.SubjectsPrimary producers, retailers and consumers in Western Sydney.ResultsThis overarching analysis of the tripartite study found that: (i) industrial food production systems can be more environmentally sustainable than alternative systems, indicating the importance of multiple food subsystems for food security; (ii) a variety of food distributors stocking healthy and sustainable items is required to ensure that these items are accessible, affordable and available to all; and (iii) it is not enough that healthy and sustainable foods are produced or sold, consumers must also want to consume them. In summary, a resilient urban food system requires that healthy and sustainable food items are produced, that consumers can attain them and that they actually wish to purchase them.ConclusionsThis capstone paper found that the interconnected nature of the different sectors in the food system means that to improve environmental sustainability, equity and population health outcomes, action should focus on the system as a whole and not just on any one sector.


2018 ◽  
Vol 10 (9) ◽  
pp. 3201 ◽  
Author(s):  
Roland Zinkernagel ◽  
James Evans ◽  
Lena Neij

With growing urbanisation the sustainability of cities has become increasingly important. Although cities have been using indicators for a long time it is only in the last decades that attempts have been made to collate indicators into sets that reflect the many different aspects required to assess the sustainability of a city. The aim of this paper is to review the evolution of indicators for monitoring sustainable urban development in order to understand how ‘new’ the indicators suggested by the UN Sustainable Development Goals (SDGs) are for cities and the challenges they may face in using them. The review reveals that previous indicator sets emphasised environmental sustainability, health and economic growth. It is also shown that indicator sets that pre-date the SDGs lacked dimensions such as gender equality and reduced inequalities. In all, the SDG indicators provide the possibility of a more balanced and integrated approach to urban sustainability monitoring. At the same time, further research is needed to understand how to adapt the SDGs, targets and indicators to specific urban contexts. Challenges of local application include their large number, their generic characteristics and the need to complement them with specific indicators that are more relevant at the city level.


2022 ◽  
Vol 12 ◽  
Author(s):  
Carole Balthazar ◽  
David L. Joly ◽  
Martin Filion

Among the oldest domesticated crops, cannabis plants (Cannabis sativa L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products. This creates unprecedented challenges to achieve better yields and environmental sustainability, while lowering production costs. In this review, we discuss the opportunities and challenges pertaining to the use of beneficial Pseudomonas spp. bacteria as crop inoculants to improve productivity. The prevalence and diversity of naturally occurring Pseudomonas strains within the cannabis microbiome is overviewed, followed by their potential mechanisms involved in plant growth promotion and tolerance to abiotic and biotic stresses. Emphasis is placed on specific aspects relevant for hemp and marijuana crops in various production systems. Finally, factors likely to influence inoculant efficacy are provided, along with strategies to identify promising strains, overcome commercialization bottlenecks, and design adapted formulations. This work aims at supporting the development of the cannabis industry in a sustainable way, by exploiting the many beneficial attributes of Pseudomonas spp.


Surfaces ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 485-496 ◽  
Author(s):  
Wilson Handoko ◽  
Farshid Pahlevani ◽  
Yin Yao ◽  
Karen Privat ◽  
Veena Sahajwalla

Corrosion resistance of steel has attracted substantial interest for manufacturing applications to reduce costs corresponding to part failures, unexpected maintenance, and shortening lifespan. Meanwhile, millions of tonnes of slag, non-recyclable glass, and automotive shredder residue (ASR) are discarded into landfills every year, polluting the environment. Combining these two major issues, we delivered an alternative solution to enhance corrosion resistance of high-C steel. In this research, utilisation of these wastes (which were chemically bonded into steel substrate) as sources for production of multi-hybrid layering—including the multi-phase ceramic layer, the carbide layer, and the selective diffusion layer—was successfully achieved by single step surface modification technology. High-resolution topographical imaging by SEM and chemical composition analysis in micron-volume by electron probe micro analyser (EPMA) were performed. Nano-characterisation by atomic force microscopy (AFM) using the PeakForce quantitative nanomechanical mapping (PF-QNM) method was conducted to define Young’s modulus value of each phase in detail. Results revealed improvement of corrosion resistance by 39% and a significantly increased hardness of 13.58 GPa. This integrated approach is prominent for economic and environmental sustainability, consolidating industry demands for more profits, producing durable, steel components in a cost effective way to reduce dependency on new resources, and minimising negative impacts to the environment from disposal of wastes to the landfills.


Sign in / Sign up

Export Citation Format

Share Document