vibrational quantum number
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Vol 488 (4) ◽  
pp. 4732-4739 ◽  
Author(s):  
Maxence Lepers ◽  
Grégoire Guillon ◽  
Pascal Honvault

ABSTRACT We use the time-independent quantum-mechanical formulation of reactive collisions in order to investigate the state-to-state H+ + HD → D+ + H2 chemical reaction. We compute cross-sections for collision energies up to 1.8 eV and rate coefficients for temperatures up to 10 000 K. We consider HD in the lowest vibrational level v = 0 and rotational levels j = 0–6, and H2 in vibrational levels v′ = 0–3 and rotational levels j′ = 0–9. For temperatures below 4000 K, the rate coefficients strongly vary with the initial rotational level j, depending on whether the reaction is endothermic (j ≤ 2) or exothermic (j ≥ 3). The reaction is also found less and less probable as the final vibrational quantum number v′ increases. Our results illustrate the importance of studying state-to-state reactions, in the context of the chemistry of the primordial universe.


2019 ◽  
Vol 19 (4) ◽  
pp. 2629-2634 ◽  
Author(s):  
Konstantinos S. Kalogerakis

Abstract. Emissions from the OH Meinel bands are routinely used to determine rotational temperatures that are considered proxies for the kinetic temperature near the mesopause region. Previous observations determined OH rotational temperatures that show a dependence on the vibrational level, with the temperature rising overall as the OH vibrational quantum number v increases. The source of this trend is not well understood and has generally been attributed to deviations from thermodynamic equilibrium. This technical note demonstrates that the existence of bimodal OH rotational population distributions is an inherent feature of rotational relaxation in gases and can provide an explanation for the previously reported temperature trend. The use of only a few lines from rotational transitions involving low rotational quantum numbers to determine rotational temperatures does not account for the bimodality of the OH rotational population distributions and leads to systematic errors overestimating the OH rotational temperature. This note presents selected examples, discusses the relevant implications, and considers strategies that could lead to more reliable OH rotational temperature determination.


2018 ◽  
Author(s):  
Konstantinos S. Kalogerakis

Abstract. Emission from the OH Meinel bands is routinely used to determine rotational temperatures that are considered proxies for the kinetic temperature near the mesopause region. Previous observations determined OH rotational temperatures that show a dependence on the vibrational level, with the temperature rising overall as the OH vibrational quantum number v increases. The source of this trend is not well understood and has generally been attributed to deviations from thermodynamic equilibrium. This Technical Note demonstrates that the existence of bimodal OH rotational population distributions is an inherent feature of rotational relaxation in gases and can provide an explanation for the previously reported temperature trend. The use of only a few lines from rotational transitions involving low rotational quantum numbers to determine rotational temperatures does not account for the bimodality of the OH rotational population distributions and leads to systematic errors overestimating the OH rotational temperature. This Note presents selected examples, discusses the relevant implications, and considers strategies that could lead to more reliable OH rotational temperature determination.


Author(s):  
Adil Nameh Ayaash

A theoretical study of four gallium monohalides molecules (GaF, GaCl, GaBr and GaI) of ground state 1∑+ by using computer model is presented to study the energy characteristics of vibrational-rotational levels as a function of the vibrational and rotational quantum number , respectively. The calculations has been performed to examine the vibrational-rotational characteristics of some gallium halides molecules. These calculations appeared that all energies (Gv, Ev,J, and Fv,J) increase with increasing vibrational and rotational quantum number and by increasing the vibrational quantum number, and by increasing the vibrational quantum number, the vibrational constant will decrease. Also theoretical study of spectra of these molecules for ground state 1∑+ has been carried out. The values of spectral lines R(J) and P(J) were calculated and the relationship between the spectral lines and the rotational quantum number was established. The results appeared the spectra line values R(J) increases when the values of rotational quantum number decrease but the spectra line values P(J) decrease when the values of rotational quantum number increase, also the spectra line values P(J) decrease when the values of (m) increase, while the values of R(J) increase at first, then decrease showing Fortrar parabola.


2013 ◽  
Vol 781-784 ◽  
pp. 9-13 ◽  
Author(s):  
Jie Cheng ◽  
Xian Fang Yue

A quasiclassical trajectory calculation is carried out to investigate the effect of reagent vibrational excitation on product rotational polarization in the reactions Li + DF (v=0-3, j=0) ---> LiF(v', j') + D. It is found that the reagent vibational excitation highly enhanced the product rotational alignment, however, the enhancement is not monotonically increasing with the gradual increase of the vibrational quantum number from v=0 to v=3. The product rotational orientation varies from the negative to positive direction ofyaxis with the increasing vibrational quantum number from v=0 to v=3.


Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Tianyun Chen ◽  
Ningjiu Zhao ◽  
Weiping Zhang ◽  
Xinqiang Wang

AbstractQuasiclassical trajectory method for the title reaction He +H2+ → HeH+ + H was carried out on the potential energy surface which was revised by Aquilanti et al. [Chem. Phys. Lett. 469, 26 (2009)]. The initial vibrational quantum number of reactant was set as v=1, v=2 and v=3. Stereodynamics information of the reaction was obtained, such as the distributions of product angular momentum P(θ r), P(ϕ r),p(ϕ r, θ r) and the two commonly used polarization-dependent differential cross sections (PDDCSs) (2π/σ)(dσ 00/dω t) and (2π/σ)(dσ 20/dω t), to get the alignment and orientation of product molecules. The results show that the influence of both the collision energy and vibrational quantum number (v) to the reaction are highly sensitive.


2010 ◽  
Vol 59 (11) ◽  
pp. 7808
Author(s):  
Xu Xue-Song ◽  
Zhang Wen-Qin ◽  
Jin Kun ◽  
Yin Shu-Hui

2007 ◽  
Vol 4 (1) ◽  
pp. 119-124
Author(s):  
Baghdad Science Journal

A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with the little published data.


Sign in / Sign up

Export Citation Format

Share Document