Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks

Author(s):  
Cuixia Jiang ◽  
Hao Chen ◽  
Qifa Xu ◽  
Xiangxiang Wang
Author(s):  
Chun Cheng ◽  
Wei Zou ◽  
Weiping Wang ◽  
Michael Pecht

Deep neural networks (DNNs) have shown potential in intelligent fault diagnosis of rotating machinery. However, traditional DNNs such as the back-propagation neural network are highly sensitive to the initial weights and easily fall into the local optimum, which restricts the feature learning capability and diagnostic performance. To overcome the above problems, a deep sparse filtering network (DSFN) constructed by stacked sparse filtering is developed in this paper and applied to fault diagnosis. The developed DSFN is pre-trained by sparse filtering in an unsupervised way. The back-propagation algorithm is employed to optimize the DSFN after pre-training. Then, the DSFN-based intelligent fault diagnosis method is validated using two experiments. The results show that pre-training with sparse filtering and fine-tuning can help the DSFN search for the optimal network parameters, and the DSFN can learn discriminative features adaptively from rotating machinery datasets. Compared with classical methods, the developed diagnostic method can diagnose rotating machinery faults with higher accuracy using fewer training samples.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Author(s):  
Jiye Shao ◽  
Rixin Wang ◽  
Jingbo Gao ◽  
Minqiang Xu

The rotor is one of the most core components of the rotating machinery and its working states directly influence the working states of the whole rotating machinery. There exists much uncertainty in the field of fault diagnosis in the rotor system. This paper analyses the familiar faults of the rotor system and the corresponding faulty symptoms, then establishes the rotor’s Bayesian network model based on above information. A fault diagnosis system based on the Bayesian network model is developed. Using this model, the conditional probability of the fault happening is computed when the observation of the rotor is presented. Thus, the fault reason can be determined by these probabilities. The diagnosis system developed is used to diagnose the actual three faults of the rotor of the rotating machinery and the results prove the efficiency of the method proposed.


Sign in / Sign up

Export Citation Format

Share Document