scholarly journals Intelligent identification of incipient rolling bearing faults based on VMD and PCA-SVM

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Linfeng Deng ◽  
Aihua Zhang ◽  
Rongzhen Zhao

Rolling bearings are the key components of rotating machinery. Incipient fault diagnosis of bearing plays an increasingly important role in guaranteeing normal and safe operation of rotating machinery. However, because of the high complexity of the fault feature extraction, the incipient faults of rolling bearings are difficult to diagnose. To solve this problem, this paper presents a new incipient fault intelligent identification method of rolling bearings based on variational mode decomposition (VMD), principal component analysis (PCA), and support vector machines (SVM). In the proposed method, the bearing vibration signals are decomposed by using VMD, and a series of intrinsic mode functions (IMFs) with different frequencies are obtained. Then, the energy and kurtosis values of each IMF are calculated to reveal the intrinsic characteristics of the vibration signals in different scales. Finally, all energy and kurtosis values of IMFs are processed via PCA and subsequently fed into SVM to achieve the bearing fault identification automatically. The effectiveness of this method is verified through the experimental bearing data. The verification results indicate that the proposed method can effectively extract the bearing fault features and accurately identify the bearing incipient faults, and outperform the two compared methods obviously in identification accuracy and computation time.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2009 ◽  
Vol 16 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Junsheng Cheng ◽  
Dejie Yu ◽  
Jiashi Tang ◽  
Yu Yang

Targeting the characteristics that periodic impulses usually occur whilst the rotating machinery exhibits local faults and the limitations of singular value decomposition (SVD) techniques, the SVD technique based on empirical mode decomposition (EMD) is applied to the fault feature extraction of the rotating machinery vibration signals. The EMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMFs) by which the initial feature vector matrices could be formed automatically. By applying the SVD technique to the initial feature vector matrices, the singular values of matrices could be obtained, which could be used as the fault feature vectors of support vector machines (SVMs) classifier. The analysis results from the gear and roller bearing vibration signals show that the fault diagnosis method based on EMD, SVD and SVM can extract fault features effectively and classify working conditions and fault patterns of gears and roller bearings accurately even when the number of samples is small.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Xiaoyuan Zhang ◽  
Tie Chen ◽  
Kai Wang

As a crucial and widely used component in industrial fields with great complexity, the health condition of rotating machinery is directly related to production efficiency and safety. Consequently, recognizing and diagnosing rotating machine faults remain to be one of the main concerns in preventing failures of mechanical systems, which can enhance the reliability and efficiency of mechanical systems. In this paper, a novel approach based on blind parameter identification of MAR model and mutation hybrid GWO-SCA optimization is proposed to diagnose faults for rotating machinery. Signals collected from different types of faults were firstly split into sets of intrinsic mode functions (IMFs) by variational mode decomposition (VMD), the decomposing mode number K of which was preset with central frequency observation method. Then the multivariate autoregressive (MAR) model of all IMFs was established, whose order was determined by Schwartz Bayes Criterion (SBC), and all parameters of the model were identified blindly through QR decomposition, where key features were subsequently extracted via principal component analysis (PCA) to construct feature vectors of different fault types. Afterwards, a hybrid optimization algorithm combining mutation operator, grey wolf optimizer (GWO), and sine cosine algorithm (SCA), termed mutation hybrid GWO-SCA (MHGWOSCA), was proposed for parameter selection of support vector machine (SVM). The optimal SVM model was later employed to classify different fault samples. The engineering application and contrastive analysis indicate the availability and superiority of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Dechen Yao ◽  
Jianwei Yang ◽  
Xi Li ◽  
Chunqing Zhao

Vibration signals resulting from railway rolling bearings are nonstationary by nature; this paper proposes a hybrid approach for the fault diagnosis of railway rolling bearings using segment threshold wavelet denoising (STWD), empirical mode decomposition (EMD), genetic algorithm (GA), and least squares support vector machine (LSSVM). The original signal is first denoised using STWD as a prefilter, which improves the subsequent decomposition into a number of intrinsic mode functions (IMFs) using EMD. Secondly, the IMF energy-torques are extracted as feature parameters. Concurrently, a GA is employed to optimize the LSSVM to improve the classification accuracy. Finally, the extracted features are used as inputs for classification by the GA-LSSVM. Actual railway rolling bearing vibration signals are used to experimentally verify the effectiveness of the proposed method. The results show that the novel method is effective and accurate for fault diagnosis of railway rolling bearings.


2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.


2020 ◽  
Vol 8 (5) ◽  
pp. 2522-2527

In this paper, we design method for recognition of fingerprint and IRIS using feature level fusion and decision level fusion in Children multimodal biometric system. Initially, Histogram of Gradients (HOG), Gabour and Maximum filter response are extracted from both the domains of fingerprint and IRIS and considered for identification accuracy. The combination of feature vector of all the possible features is recommended by biometrics traits of fusion. For fusion vector the Principal Component Analysis (PCA) is used to select features. The reduced features are fed into fusion classifier of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Navie Bayes(NB). For children multimodal biometric system the suitable combination of features and fusion classifiers is identified. The experimentation conducted on children’s fingerprint and IRIS database and results reveal that fusion combination outperforms individual. In addition the proposed model advances the unimodal biometrics system.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhongbin Wang ◽  
Bin Liang ◽  
Lei Si ◽  
Kuangwei Tong ◽  
Chao Tan

The recognition of shearer cutting state is the key technology to realize the intelligent control of the shearer, which has become a highly difficult subject concerned by the world. This paper takes the sound signal as analytic objects and proposes a novel recognition method based on the combination of variational mode decomposition (VMD), principal component analysis method (PCA), and least square support vector machine (LSSVM). VMD can decompose a signal into various modes by using calculus of variation and effectively avoid the false component and mode mixing problems. On this basis, an improved gravitational search algorithm (IGSA) is designed by using the position update mechanism of Levy flight strategy to find the optimal parameter combination of VMD. Then, the feature extraction is achieved by calculating the envelope entropy and kurtosis of the decomposed intrinsic mode functions (IMFs). To avoid dimensional disasters and reinforce the classification performance, PCA is introduced to choose useful features, and the LSSVM-based classifier is reasonably constructed. Finally, the experimental results indicate that the proposed method is more feasible and superior in the recognition of shearer cutting states.


2020 ◽  
Vol 10 (16) ◽  
pp. 5542 ◽  
Author(s):  
Rui Li ◽  
Chao Ran ◽  
Bin Zhang ◽  
Leng Han ◽  
Song Feng

Rolling bearings are fundamental elements that play a crucial role in the functioning of rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper, a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration signals are decomposed with the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear entropy features are further processed to select the more discriminative fault features and to reduce feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities. The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings under multiple operational conditions (i.e., speeds and loads). The results show that our method gives better diagnosis results as compared to some existing approaches.


2011 ◽  
Vol 66-68 ◽  
pp. 1982-1987
Author(s):  
Wei Niu ◽  
Guo Qing Wang ◽  
Zheng Jun Zhai ◽  
Juan Cheng

The vibration signals of rotating machinery in operation consist of plenty of information about its running condition, and extraction and identification of fault signals in the process of speed change are necessary for the fault diagnosis of rotating machinery. This paper improves DDAG classification method and proposes a new fault diagnosis model based on support vector machine to solve the problem of restricting the rotating machinery fault intelligent diagnosis due to the lack of fault data samples. The testing results demonstrate that the model has good classification precision and can correctly diagnose faults.


Sign in / Sign up

Export Citation Format

Share Document