protein disorder
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 19)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Cesar Mendoza-Martinez ◽  
Michail Papadourakis ◽  
salome llabres ◽  
Arun A Gupta ◽  
Paul N Barlow ◽  
...  

Many proteins recognise other proteins via mechanisms that involve the folding of intrinsically disordered regions upon complex formation. Here we investigate how the selectivity of a drug-like small molecule arises from its modulation of a protein disorder-to-order transition. Binding of the compound AM-7209 has been reported to confer order upon an intrinsically disordered lid region of the oncoprotein MDM2. Calorimetric measurements revealed that truncation of the lid region of MDM2 increases the dissociation constant of AM-7209 250-fold. By contrast, lid truncation has little effect on the binding of the ligand Nutlin-3a. Insights into these differential binding energetics were obtained via a complete thermodynamic analysis that featured adaptive absolute alchemical free energy of binding calculations with enhanced-sampling molecular dynamics simulations. The simulations reveal that in apo MDM2 the ordered lid state is energetically disfavoured. AM-7209, but not Nutlin-3a, shows a significant energetic preference for ordered lid conformations, thus shifting the balance towards ordering of the lid in the AM-7209/MDM2 complex. The methodology reported herein should facilitate broader targeting of intrinsically disordered regions in medicinal chemistry.


Author(s):  
Sk. Sarif Hassan ◽  
Kenneth Lundstrom ◽  
Ángel Serrano-Aroca ◽  
Parise Adadi ◽  
Alaa Aljabali ◽  
...  

The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made fighting of the COVID-19 pandemic is a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in the lung tissues. Mutations and co-mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, We highlight 128 single mutations and 35 co-mutations in the unique SARS-CoV-2 ORF10 variants in this article. The possible predicted effects of these mutations and co-mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.


2020 ◽  
Vol 26 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Jesús Alejandro Zamora-Briseño ◽  
Alejandro Pereira-Santana ◽  
Sandi Julissa Reyes-Hernández ◽  
Daniel Cerqueda-García ◽  
Enrique Castaño ◽  
...  

2020 ◽  
Vol 21 (16) ◽  
pp. 5814 ◽  
Author(s):  
Jaime Santos ◽  
Valentín Iglesias ◽  
Carlos Pintado ◽  
Juan Santos-Suárez ◽  
Salvador Ventura

The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical principles, of which the balance between a low sequence hydrophobicity and a high net charge appears to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of the charge–hydropathy (C–H) space and that a linear boundary condition is sufficient to distinguish between folded and disordered proteins, an approach widely applied for the prediction of protein disorder. Nevertheless, it is evident that the C–H relation of a protein is not unalterable but can be modulated by factors extrinsic to its sequence. Here, we applied a C–H-based analysis to develop a computational approach that evaluates sequence disorder as a function of pH, assuming that both protein net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for diverse applications, from the analysis of conditionally disordered segments to the synthetic design of disorder tags for biotechnological applications. Importantly, since many disorder predictors use hydrophobicity as an input, the here developed framework can be implemented in other state-of-the-art algorithms.


2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Lovisa Stenström ◽  
Diana Mahdessian ◽  
Christian Gnann ◽  
Anthony J Cesnik ◽  
Wei Ouyang ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 386
Author(s):  
Ria T. Villafana ◽  
Sephra N. Rampersad

The variability and phylogeny among TRI5, TRI8 and TRI11 nucleotide and translated protein sequences of isolates from Trinidad belonging to Fusarium incarnatum-equiseti species complex (FIESC) were compared with FIESC reference sequences. Taxa appeared to be more divergent when DNA sequences were analyzed compared to protein sequences. Neutral and non-neutral mutations in TRI protein sequences that may correspond to variability in the function and structure of the selected TRI proteins were identified. TRI5p had the lowest amino acid diversity with zero predicted non-neutral mutations. TRI5p had potentially three protein disorder regions compared to TRI8p with five protein disorder regions. The deduced TRI11p was more conserved than TRI8p of the same strains. Amino acid substitutions that may be non-neutral to protein function were only detected in diacetoxyscirpenol (DAS) and fusarenon-X (FUS-X) producers of the reference sequence subset for TRI8p and TRI11p. The deduced TRI5 and TRI8 amino acid sequences were mapped to known 3D-structure models and indicated that variations in specific protein order/disorder regions exist in these sequences which affect the overall structural conservation of TRI proteins. Assigning single or combination non-neutral mutations to a particular toxicogenic phenotype may be more representative of potential compared to using genotypic data alone, especially in the absence of wet-lab, experimental validation.


Sign in / Sign up

Export Citation Format

Share Document