food patch
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Simon Benmaamar ◽  
◽  
Björn Brembs

Environmental variability during the development of an organism has known impacts on the expression of certain behavioural patterns. We used the fruit fly Drosophila melanogaster to investigate how different environmental conditions interact with the allelic variants of rover (forR) and sitter (fors) at the foraging locus to affect food-related behaviour of larvae. We discovered that larval density and nutrient availability were key environmental factors affecting the larval behaviour during early development. High larval density decreased the tendency of rovers to leave a food patch and reduced their travelled path lengths, such that rovers and sitters showed no more significant differences regarding their behaviour. Similar results were obtained when starving the larvae. Furthermore, cutting the availability only of specific nutrients such as sugar, fat or protein during development all affected larval foraging behaviour and locomotion.


2021 ◽  
Author(s):  
Amir H. Behbahani ◽  
Emily H. Palmer ◽  
Román A. Corfas ◽  
Michael H. Dickinson
Keyword(s):  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Martina Dal Bello ◽  
Alfonso Pérez-Escudero ◽  
Frank C Schroeder ◽  
Jeff Gore

Foraging animals have to locate food sources that are usually patchily distributed and subject to competition. Deciding when to leave a food patch is challenging and requires the animal to integrate information about food availability with cues signaling the presence of other individuals (e.g., pheromones). To study how social information transmitted via pheromones can aid foraging decisions, we investigated the behavioral responses of the model animal Caenorhabditis elegans to food depletion and pheromone accumulation in food patches. We experimentally show that animals consuming a food patch leave it at different times and that the leaving time affects the animal preference for its pheromones. In particular, worms leaving early are attracted to their pheromones, while worms leaving later are repelled by them. We further demonstrate that the inversion from attraction to repulsion depends on associative learning and, by implementing a simple model, we highlight that it is an adaptive solution to optimize food intake during foraging.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Zoltán Tóth ◽  
Boglárka Jaloveczki

The utilization of social cues is usually considered an important adaptation to living in social groups, but recent evidence suggests that social information use may be more prevalent in the animal kingdom than previously thought. However, it is debated whether such information can efficiently diffuse in temporary aggregations of non-grouping individuals where social cohesion does not facilitate information transmission. Here, we provide experimental evidence that a simple social cue, the movement of conspecifics in a structured environment affected individuals' spatial decisions in common frog ( Rana temporaria ) tadpoles and thereby facilitated the discovery rate of a novel food patch. However, this was true only in those tadpole collectives that consisted solely of untutored individuals. In those collectives where tutors with prior experience with the presented food type were also present, this social effect was negligible most probably due to the difference in activity between naive and tutor individuals. We also showed that the proportion of tadpoles that discovered the food patch was higher in the control than in the tutored collectives, while the proportion of feeding tadpoles was only marginally higher in the latter collectives. Our findings indicate that social information use can influence resource acquisition in temporary aggregations of non-grouping animals, but individual differences in satiety may hinder effective information spread associated with exploitable food patches.


2020 ◽  
Author(s):  
M. Dal Bello ◽  
A. Pérez-Escudero ◽  
F. C. Schroeder ◽  
J. Gore

SummaryForaging animals have to locate food sources that are usually patchily distributed and subject to competition. Deciding when to leave a food patch is challenging and requires the animal to integrate information about food availability with cues signaling the presence of other individuals (e.g. pheromones). To study how social information transmitted via pheromones can aid foraging decisions, we investigated the behavioral responses of the model nematode Caenorhabditis elegans to food depletion and pheromone accumulation in food patches. We experimentally show that animals consuming a food patch leave it at different times and that the leaving time affects the animal preference for its pheromones. In particular, worms leaving early are attracted to their pheromones, while worms leaving later are repelled by them. We further demonstrate that the inversion from attraction to repulsion depends on associative learning and, by implementing a simple model, we highlight that it is an adaptive solution to optimize food intake during foraging.


2019 ◽  
Vol 88 (12) ◽  
pp. 1950-1960 ◽  
Author(s):  
Lysanne Snijders ◽  
Ralf H. J. M. Kurvers ◽  
Stefan Krause ◽  
Alan N. Tump ◽  
Indar W. Ramnarine ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Siyu Serena Ding ◽  
Karen S. Sarkisyan ◽  
Andre E. X. Brown

ABSTRACTFor most animals, feeding includes two behaviours: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviours. However, most methods of measuring feeding in worms quantify either foraging behaviour or food intake but not both. Imaging the depletion of fluorescently labelled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from each other before foraging collectively for more food; similarly, during high density swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and suggest a hygiene hypothesis for the function of C. elegans aggregation and swarming.


Sign in / Sign up

Export Citation Format

Share Document