scholarly journals Hydraulic modeling of induced and propagated fractures: Analysis of flow and pressure data from hydromechanical experiments in the COSC‐1 deep borehole in crystalline rock near Åre, Sweden

Author(s):  
Farzad Basirat ◽  
Chin‐Fu Tsang ◽  
Alexandru Tatomir ◽  
Yves Guglielmi ◽  
Patrick Dobson ◽  
...  
Author(s):  
Ethan A. Bates ◽  
Jacopo Buongiorno ◽  
Emilio Baglietto ◽  
Michael J. Driscoll

While extensive stress field data are available from crystalline rock boreholes drilled in France (Soultz), Germany (KTB), and the USA (Cajon Pass, Monticello Reservoir), Canada and Sweden, the data and methods used to analyze them have yet to be applied to very deep geologic disposal facilities. Typically, to alleviate the stress fields that are intensified in a borehole, muds (mixtures of clay and water) are a critical component and are widely used in the drilling industry. In the first portion of this paper, we review the available mechanical data and analysis methods. Based on the most applicable measurements (in Canada and Germany), we propose values of stress fields and rock properties to be used for generic assessment of deep borehole disposal. The minimum horizontal stress can be approximated as Sh=23.2D, the maximum horizontal stress as SH=43.1D, and the vertical stress as SV=27.5D, where the stresses are in MPa and D is depth in km. This analysis also incorporates the effect of thermal stresses (relieved) by the cool drilling mud. Using an average uniaxial compressive strength results (C=212 MPa) and conservatively neglecting the increase in strength of crystalline rock under polyaxial conditions, a stable borehole can be drilled to 4.55 km with mud density of 1020 kg/m3. This is based on a stability limit such that at the bottom of the hole, a significant portion of the wall (180°/360°) reaches a critical state of stress (i.e., experiences spalling). Using relations developed for shallow mines (which may be overly conservative) the spalled zone is estimated to have a radius that is approximately twice that of the borehole. To reach 5 km, the mud density should be raised to 1420 kg/m3, or be actively cooled (90°C) below the ambient temperature of the rock (∼135°C) at that depth.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Lasse Ahonen ◽  
Ilmo Kukkonen ◽  
Taru Toppi ◽  
Mari Nyyssonen ◽  
Malin Bomberg ◽  
...  

AbstractResults of microbiological and geochemical sampling in the Outokumpu deep (2.5 km) borehole are presented. The results indicate that the discharging fractures control the observed variations in the microbial populations at different depths, which evidently reflect true variations in the microbial populations in fractures of the crystalline bedrock.


2020 ◽  
Author(s):  
Farzad Basirat ◽  
Chin-Fu Tsang ◽  
Alexandru Tatomir ◽  
Yves Guglielmi ◽  
Patrick Dobson ◽  
...  

<p>Characterization of the coupled hydro-mechanical properties of rock fractures has become an increasingly important field of geosciences research, relevant for a number of key applications. Examples include analysis of enhanced geothermal systems, hydraulic fracturing operations, CO<sub>2</sub> geological storage, nuclear waste disposal and mining operations. A newly developed technology that allows conducting advanced experimentation of the coupled HM processes in the field is the step-rate injection method for fracture in-situ properties (SIMFIP) by Guglielmi et al. (2014). The SIMFIP method is unique in that it measures simultaneously the time evolution of flow rate, pressure and 3D deformation of a packed off borehole interval.  </p><p>During June 2019 a field campaign was carried out in Åre, Sweden, where the SIMFIP was applied in the COSC-1 scientific borehole to estimate the fracturing and fracture propagation behavior during hydraulic stimulation in some previously well-characterized rock sections. Three intervals were investigated: an unfractured section (intact rock) at 485.2 m depth, a non-conductive steeply dipping fracture at 515.1 m depth, and a section with a gently dipping hydraulically conductive fracture at 504.5 m depth (Niemi et al., in prep.). </p><p>As a first step for analyzing the results, this work aims to develop a simple hydrologic model for the interpretation of the collected pressure and flow data during different stages of the experiments. Modeling has been used to estimate the key parameters of the induced and propagated fractures such as the length, aperture and geometry, based on the pressure response during the water injection and abstraction steps. A numerical model based on COMSOL Multiphysics combining the fluid flow within the fracture and rock domains was developed and the permeability of fractures was defined by the well-known cubic law function of the local fracture aperture. The initial low injection-pressure data for the test interval without any fracture were used to find the parameters of the packed off borehole interval. Consequently, these parameters were used in the analysis of the case with a conducting fracture, as well as the case with a non-conducting fracture. Models in agreement with the observed pressures and injection flow rates could be defined for all the three cases, allowing parameters to be estimated for the length and aperture of the induced fractures in each case.</p><p> </p><p>Guglielmi Y, Cappa F, Lançon H, Janowczyk JB, Rutqvist J, Tsang CF and Wang JSY. (2014) ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor. Rock Mech Rock Eng 47:303–311. https://doi.org/10.1007/s00603-013-0517-1</p><p>Niemi, Auli, Yves Guglielmi, Patrick Dobson, Paul Cook, Chris Juhlin, Chin-Fu Tsang, Benoit Dessirier, Alexandru Tatomir, Henning Lorenz, Farzad Basirat, Bjarne Almqvist, Emil Lundberg and Jan-Erik Rosberg 'Coupled hydro-mechanical experiments on fractures in deep crystalline rock at COSC-1 – Field test procedures and first results’. Manuscript under preparation, to be submitted to Hydrogeology Journal.</p><p> </p><p> </p>


2015 ◽  
Author(s):  
Ron Miller ◽  
Tracey Liberi ◽  
John Scioscia

2017 ◽  
Vol 4 (1) ◽  
pp. 41-52
Author(s):  
Dedy Loebis

This paper presents the results of work undertaken to develop and test contrasting data analysis approaches for the detection of bursts/leaks and other anomalies within wate r supply systems at district meter area (DMA)level. This was conducted for Yorkshire Water (YW) sample data sets from the Harrogate and Dales (H&D), Yorkshire, United Kingdom water supply network as part of Project NEPTUNE EP/E003192/1 ). A data analysissystem based on Kalman filtering and statistical approach has been developed. The system has been applied to the analysis of flow and pressure data. The system was proved for one dataset case and have shown the ability to detect anomalies in flow and pres sure patterns, by correlating with other information. It will be shown that the Kalman/statistical approach is a promising approach at detecting subtle changes and higher frequency features, it has the potential to identify precursor features and smaller l eaks and hence could be useful for monitoring the development of leaks, prior to a large volume burst event.


1981 ◽  
Vol 11 ◽  
Author(s):  
M.H. Bradbury ◽  
D. Lever ◽  
D. Kinsey

One of the options being considered for the disposal of radioactive waste is deep burial in crystalline rocks such as granite. It is generally recognised that in such rocks groundwater flows mainly through the fracture networks so that these will be the “highways” for the return of radionuclides to the biosphere. The main factors retarding the radionuclide transport have been considered to be the slow water movement in the fissures over the long distances involved together with sorption both in man-made barriers surrounding the waste, and onto rock surfaces and degradation products in the fissures.


Author(s):  
A. O. Marnila

Geragai graben is located in the South Sumatera Basin. It was formed by mega sequence tectonic process with various stratigraphic sequence from land and marine sedimentation. One of the overpressure indication zones in the Geragai graben is in the Gumai Formation, where the sedimentation is dominated by fine grained sand and shale with low porosity and permeability. The aim of the study is to localize the overpressure zone and to analyze the overpressure mechanism on the Gumai Formation. The Eaton method was used to determine pore pressure value using wireline log data, pressure data (RFT/FIT), and well report. The significant reversal of sonic and porosity log is indicating an overpressure presence. The cross-plot analysis of velocity vs density and fluid type data from well reports were used to analyze the causes of overpressure in the Gumai Formation. The overpressure in Gumai Formation of Geragai graben is divided into two zones, they are in the upper level and lower level of the Gumai Formation. Low overpressure have occurred in the Upper Gumai Formation and mild overpressure on the Lower Gumai Formation. Based on the analyzed data, it could be predicted, that the overpressure mechanism in the Upper Gumai Formation might have been caused by a hydrocarbon buoyancy, whereas in the Lower Gumai Formation, might have been caused by disequilibrium compaction as a result of massive shale sequence.


Sign in / Sign up

Export Citation Format

Share Document