scholarly journals An Integrated Approach to the Optimization of Plates in Plane Stress State Operated at High Temperatures

2021 ◽  
Vol 24 (3) ◽  
pp. 52-60
Author(s):  
Мark M. Fridman ◽  

Many critical elements of building and machine-building structures during their operation are in difficult operating conditions (high temperature, aggressive environment, etc.). In this case, they can be subject to a double effect: corrosion and material damage. Corrosion leads to a decrease in the cross-section of a structure, resulting in stress increase therein. In turn, damage to the material is accompanied by the appearance of microcracks and voids therein, due to inelastic deformation (creep), leading to a deterioration in its physical properties (for example, the elastic modulus) and a sharp decrease in the stress values at which the structure is destroyed. This article continues the study in the field of the optimal design of structures subject to the aforementioned double effect by the example of the optimization of plates with holes in the plane stress state, exposed to high temperatures (in previous works, the use of this approach was demonstrated in the optimization of the bending elements of rectangular and I-sections). Used as a corrosion equation is the modified Dolinsky mode, which takes into account the (additional) effect of the protective properties of an anticorrosive coating on the corrosion kinetics. Taken as a kinetic equation describing the change in material damage, is Yu. N. Rabotnov’s model, which enables to determine the duration of the incubation period of the beginning of the tangible process of material damage. To study the stress state of a plate, the finite element method is used. With a given contour of the plate, found is the optimal distribution of the thickness of the finite elements into which the given plate is divided. Acting as a constraint of the optimization problem is the parameter of damage to the plate material. The approach proposed in this work can be used to solve similar problems of the optimal design of structures operating under conditions of corrosion and material damage, using both analytical solutions and numerical methods.

2015 ◽  
Vol 111 ◽  
pp. 386-389 ◽  
Author(s):  
Nikolay I. Karpenko ◽  
Sergey N. Karpenko ◽  
Aleksey N. Petrov ◽  
Zakhar A. Voronin ◽  
Anna V. Evseeva

Author(s):  
Babak Haghpanah ◽  
Jim Papadopoulos ◽  
Davood Mousanezhad ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri

An approach to obtain analytical closed-form expressions for the macroscopic ‘buckling strength’ of various two-dimensional cellular structures is presented. The method is based on classical beam-column end-moment behaviour expressed in a matrix form. It is applied to sample honeycombs with square, triangular and hexagonal unit cells to determine their buckling strength under a general macroscopic in-plane stress state. The results were verified using finite-element Eigenvalue analysis.


Author(s):  
Alexander Zvorykin ◽  
Roman Popov ◽  
Mykola Bobyr ◽  
Igor Pioro

Analysis of engineering approach to the operational life forecasting for constructional elements with respect to the low-cycle fatigue is carried out. Applicability limits for a hypothesis on existence of generalized cyclic-deforming diagram in case of complex low-cycle loading (deforming) are shown. It is determined, that under condition of plane-stress state and piecewise-broken trajectories of cycle loading with stresses and deformation checking the cyclic deforming diagram is united in limits of deformations, which are not exceeded 10 values of deformation corresponding material yield point. Generalized kinematic equation of material damageability is described. The method of damageability parameter utilization for increasing of accuracy calculation of structural elements low-cycle fatigue by using the effective coefficients of stresses and deformations taking into account the damageability parameter is given.


2019 ◽  
Vol 6 (8) ◽  
pp. 085602 ◽  
Author(s):  
Huasheng Zheng ◽  
Wen An ◽  
Jinwei Wu ◽  
Zhengshan Zhao ◽  
Shengyu Xiao

Sign in / Sign up

Export Citation Format

Share Document